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Abstract In this paper we study a problem in the area of coding theory. In
particular, we focus on a class of error-correcting codes called convolutional
codes. We characterize convolutional codes that can correct bursts of erasures
with the lowest possible delay. This characterization is given in terms of a
block Toeplitz matrix with entries in a finite field that is built upon a given
generator matrix of the convolutional code. This result allows us to provide a
concrete construction of a generator matrix of a convolutional code with entries
being only zeros or ones that can recover bursts of erasures with low delay.
This construction admits a very simple decoding algorithm and, therefore,
simplifies the existing schemes proposed recently in the literature.

Keywords Linear algebra · (block) Toeplitz matrices · Error-correcting
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1 Introduction

Coding theory has emerged out of the need for better communication and has
rapidly developed as a mathematical theory in strong relationship with algebra
and combinatorics. Error correction codes are used in practical applications
constantly and have been the foundation of the revolutionary growth in digital
communications and storage.

A very interesting class of error correcting codes is the class of convolutional
codes [15]. Convolutional codes offer an approach to error control coding sub-
stantially different from block codes as they encode the entire data stream into
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a single codeword. Mathematically, convolutional codes are defined as F((D))-
subspaces of F((D))n, where F((D)) is the field of Laurent polynomials with
coefficients in a finite field F. The design and construction of convolutional
codes boil down to the construction of block Toeplitz matrices with entries
in a finite field, typically, the binary field or fields with characteristic 2. The
designed properties of this matrix will depend on the desired features of the
associated convolutional code. For example, convolutional codes with optimal
(column) distances require the construction of superregular matrices [8,13,25].
Currently, there are only two general construction of superregular matrices and
both require huge finite fields [1,2,8]. Some computer search algorithms to seek
superregular matrices have been recently proposed [6,11,12]. However, many
problems in the area remain open, as for instance, the minimum field size
needed for the existence of a superregular matrix of a given size [14], although
some conjectures have been proposed in the literature, see for instance [8].

Recently, there has been a great interest in the theory of codes for streaming
applications where a bitstream of data is transmitted sequentially in real-time
under strict latency constraints [3–5,7,16,17,19]. This is due to the fact that in
many multimedia applications, such as real-time video conference, the trans-
mission must be performed sequentially and with minimal perceptible delay
at the destination. As it has been shown in the literature, the problem of de-
signing optimal error correcting codes that admit low-delay decoders have not
been throughly treated before and have many unique differences from classical
error correction designs. Classical error correcting codes require interleaving
and long decoder delays which is not acceptable in many real-time multimedia
communication applications.

Typically, streaming applications operate on packet networks and recent
investigations have shown that packet losses occur in bursts of erasures rather
than errors [17]. Moreover, it is known that the performance degradation due to
burst losses is more relevant than random isolated losses. In the seminal work
[19] the authors analysed this channel and established a fundamental trade-off
bound between decoding delay and the burst length for a given rate. More-
over, they presented an explicit class of encoders, called Short codes, which
achieve this bound with equality and have the shortest possible decoding delay
required to correct bursts of a given length. Later in [5] this construction was
simplified and a layer was added in order to deal also with isolated erasures.
These codes were called Midas codes. These constructions were based on MDS
Reed-Solomon block codes and m-MDS convolutional codes, respectively, and
therefore the underlying field sizes are required to be relatively large.

In this work, we shall focus on convolutional codes over the burst erasure
channel (formally defined below). We study and characterize the type of en-
coders that are optimal with respect to the rate, decoding delay and burst
length. Moreover, we also present a new and novel class of encoders defined
over the binary field and therefore it is also optimal with respect to the field
size. As a consequence of this, the decoding is straightforward.

In contrast to previous contributions, we use the polynomial generator ma-
trix approach to represent convolutional codes which can facilitate the analysis
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when considering the degree of the code or minimal input/state/output rep-
resentations [9,23].

2 Preliminaries

Let F = GF (q) be a finite field of size q, F((D)) be the field of formal Laurent
polynomials, F(D) be the field of rational polynomials and F[D] be the ring
of polynomials all of them with coefficients in F.

2.1 Convolutional Codes

Definition 1 (Definition 2.3 of [20]) A convolutional code C of rate k/n
is an F((D))-subspace of F((D))n of dimension k given by a rational encoder
matrix G(D) ∈ F(D)k×n, i.e.

C = imF((D))G(D) =
{
vvv(D) = uuu(D)G(D) | uuu(D) ∈ Fk((D))

}
.

Assume that G(D) =
∑m
i=0GiD

i is polynomial. Then, m is called the
memory of G(D) and the j-th associated sliding matrix of G(D) is

Gcj =


G0 G1 · · · Gj

G0 · · · Gj−1
. . .

...
G0

 , for j ∈ N,

with Gj = O when j > m, and analogously, the infinite sliding matrix of
G(D) is

Gc∞ =



G0 G1 · · · Gm
G0 · · · Gm−1 Gm

. . .
...

...
. . .

G0 G1 · · · Gm
. . .

. . .
. . .

 .

The distance is an invariant of the code that serves as an indicator of the
perfomance of the code [10,21,24]. In the context of convolutional codes there
are two fundamental types of distances, the free distance and the column dis-
tance. Column distance is associated to the error-correcting capabilities of the
convolutional code per time interval [22,26]. Even though codes with opti-
mal free distance and optimal column distance were used in [5] for streaming
applications, these notions will not play an important role in the context of
burst erasure channels. Instead, the notion of column span is more relevant
for correction of bursts of erasures. In [19] this notion was introduced as the
proper indicator of the error-burst-correcting capabilities of an encoder.
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Definition 2 The column span of Gcj is defined as

CS(j) = min
{

span(uuuGcj) | uuu = (uuu0,uuu1, . . . ,uuuj), uuu0 6= 0
}

where the span of a vector is j − i+ 1, where i and j are the first and the last
nonzero entries of such a vector, respectively.

Assume that a burst of maximum length L occurs within a window of
length W +1. From Lemma 1.1 of [7] it follows that, it can be corrected if and
only if CS(W ) > L.

2.2 Delay in Burst Erasure Channels

We follow previous approaches and regard the symbols vvvi as packets and con-
sider that losses occur on a packet level [5,18,26]. In the transmission of
a stream of information at each time instant i we receive a symbol packet
vvvi ∈ Fn. Over an erasure channel the packets either arrive correctly or other-
wise are regarded as an erasure. In burst erasure channels these erasures tend
to occur in bursts. The goal of this work is to study how to construct polyno-
mial encoders tailor-made to correct burst of erasures. Suppose that the infor-
mation has been correctly received up to an instant i and a burst of length L is
received at time instant i, i.e., one or more packets are lost from the sequence
(vvvi, vvvi+1, . . . , vvvi+L−1). Then, we say that the decoding delay is T if the encoder
can reconstruct each source packet with a delay of T source packets, i.e., we
can recover uuui+j (for j ∈ {0, 1, . . . , L − 1}) once vvvi+L, vvvi+L+1, . . . , vvvi+j+T are
received. In [19] the following result on the trade-off between delay and redun-
dancy was derived.

Theorem 1 (Theorem 1 of [19]) If a rate R encoder enables correction of
all burst of erasures of length L with decoding delay at most T , then,

T

L
≥ max

{
1,

R

1−R

}
. (1)

A generalization of this result was later presented in [5] taking into ac-
count not only burst of erasures but isolated erasures as well. It is also worth
mentioning the upperbounds given in [3,7] on the maximum correctable burst
length in terms of the encoder parameters n, k and m. In this work, we shall
focus on low delay decoding under burst of erasures, and so consider only the
inequality given in (1) without taking into consideration the memory of the
encoder or isolated losses. A natural follow-up work will be to incorporate
these parameters in the bound (1) and derive optimal codes with respect to
this bound.
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3 Systematic Encoders for Burst Erasure Correction with Low
Delay

Convolutional codes with large column distance are very appealing for se-
quential decoding and have excellent error correction capabilities, but they
require, in general, huge finite fields [2] and long delays. Even though these
type of codes have been proposed for applications that consider erasure chan-
nels, see [26], they do not generally achieve the best trade-off between delay,
redundancy, field size and burst correction.

Consider a systematic encoder G(D) = [Ik Ĝ(D)], Ĝ(D) =
∑m
j=0 ĜjD

j

and a submatrix of the sliding matrix Ĝcj , with j ≥ L+ T

ĜtruncL+T =


ĜL ĜL+1 · · · ĜT
ĜL−1 ĜL · · · ĜT−1

...
... · · ·

...

Ĝ1 Ĝ2 · · · ĜT−L+1

 , (2)

of size Lk × (T − L+ 1)(n− k).
This matrix will play an important role in the construction of good burst

correction convolutional codes with low delay. This fact will be evident in the
next example. Before, we present a lemma which will need for our results.
From now on, we denote by O the zero matrix of the appropiate size.

Lemma 1 Assume that A =

(
A1

A2

)
, where A1 is a k × t matrix, with k ≤ t,

bbb a vector of length t and, consider the linear system

(xxx0,xxx1)A = bbb (3)

where xxx0 is a vector of length k. The following statements are equivalents

1. xxx0 is univocally determined by the system (3);
2. There exists an invertible matrix P of size t× t such that

AP =

(
Ik O
O M

)
; (4)

3. A1 has full row rank and,

rowspan(Ik O) ∩ rowspan(N M) = {0}. (5)

Proof (1⇔ 2) This part follows from Gauss-Jordan elimination over the columns
of A.

(2⇒ 3) It is enough to observe that the invertible matrix P does not affect
to the linearly independence of the rows of A. Thus, if one can transform A
into a matrix of the form (4) the statement (3) readily follows.
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(3⇒ 2) From the first part of condition 3, there exists an invertible t × t
matrix Q such that

AQ =

(
Ik O
N M

)
.

Now, from (5) it follows that

rowspan(Ik O) ∩ rowspan(N M) = {0}.

Assume that vvv ∈ rowspan(N M) with vvv 6= 0, then vvv /∈ rowspan(Ik O). We
have that vvv = (uuuM uuuN) for some uuu 6= 0. If uuuM = 0, then uuuN = 0; that is, the
same rows that are linearly independent in M are also linearly independent in
N ; then, rk(N M) = rk(M). In other words, there exists a (t− k)× k matrix
R such that N = MR, so(

Ik O
N M

)(
Ik O
−R It−k

)
=

(
Ik O
O M

)
.

Finally, the condition 2 follows taking

P = Q

(
Ik O
−R It−k

)
.

ut

Next, we present an illustrative example where we explain how to recover
the lost packets in a burst of erasures.

Example 1 Assume that we want to correct a burst of erasures of maximum
length L = 3 with a design decoding delay T = 6. To this end, we build a
convolutional code with parameters n = 6 and k = 4. Note that with these
parameters, we have that R = 2

3 and the bound given in Theorem 1 is satisfied
with equality. Suppose without lost of generality that the transmission starts
at time instant zero. Then, we have that

G(D) =
(
Ik Ĝ(D)

)
= (Ik Ĝ0) + (O Ĝ1)D + (O Ĝ2)D2 + · · ·

and vvv(D) = uuu(D)G(D) with

uuu(D) = uuu0 + uuu1D + uuu2D
2 + · · · and vvv(D) = vvv0 + vvv1D + vvv2D

2 + · · ·

and then, the received sequence is

vvv =
(
uuu0 uuu0Ĝ0,uuu1 uuu1Ĝ0 + uuu0Ĝ1,

uuu2 uuu2Ĝ0 + uuu1Ĝ1 + uuu0Ĝ2,

uuu3 uuu3Ĝ0 + uuu2Ĝ1 + uuu1Ĝ2 + uuu0Ĝ3, . . .
)
.
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Equivalently, using constant matrices one can write

(vvv0, vvv1, vvv2, · · · ) = (uuu0,uuu1,uuu2, · · · )


Ik Ĝ0 O Ĝ1 O Ĝ2 . . .

O Ik Ĝ0 O Ĝ1 . . .

O O Ik Ĝ0 . . .
...

...
...

. . .


, (6)

where we can expressed the vector vvvi = (uuui v̂vvi), with v̂vvi =
∑i
j=0 uuui−jĜj . The

identity matrices of the block diagonal of the matrix in (6) allow us to obtain
the packets uuui directly without decoding, if the corresponding vvvi has been
received correctly.

Suppose that we have received a burst of erasures in the first three packets
of our message

vvv = (F,F,F, vvv3, vvv4, vvv5, vvv6, vvv7, vvv8) ,

that is, the burst of erasure starts at time instant 0. We need to recover uuu0
at time instant 6, because the decoding delay is T = 6; therefore, uuu1 will
be recover at time instant 7, and uuu2 at time instant 8. Hence, to recover the
packets uuu0,uuu1 and uuu2, we regard them as unknowns xxx0,xxx1 and xxx2, respectively.
Thus, it follows from the system (6) that to recover uuu0 we must solve the
following linear system of equations

(xxx0,xxx1,xxx2)Ĝtrunc9 = (xxx0,xxx1,xxx2)

 Ĝ3 Ĝ4 Ĝ5 Ĝ6

Ĝ2 Ĝ3 Ĝ4 Ĝ5

Ĝ1 Ĝ2 Ĝ3 Ĝ4

 = (bbb
(0)
0 , bbb

(0)
1 , bbb

(0)
2 , bbb

(0)
3 ),

where, (
bbb
(0)
0 , bbb

(0)
1 , bbb

(0)
2 , bbb

(0)
3

)
=
(
v̂vv3 − uuu3Ĝ0, v̂vv4 − uuu4Ĝ0 − uuu3Ĝ1,

v̂vv5 − uuu5Ĝ0 − uuu4Ĝ1 − uuu3Ĝ2,

v̂vv6 − uuu6Ĝ0 − uuu5Ĝ1 − uuu4Ĝ2 − uuu3Ĝ3

)
.

By Lemma 1, we will be able to obtain xxx0 univocally and, therefore recover
uuu0, if the previous system satisfies the condition 3 of Lemma 1, that is, if the

submatrix
(
Ĝ3 Ĝ4 Ĝ5 Ĝ6

)
of Ĝtrunc9 has full row rank and

rowspan
(
Ĝ3 Ĝ4 Ĝ5 Ĝ6

)
∩ rowspan

(
Ĝ2 Ĝ3 Ĝ4 Ĝ5

Ĝ1 Ĝ2 Ĝ3 Ĝ4

)
= {0}.

Analogously, to recover uuu1 we must solve the system

(xxx1,xxx2,uuu3)Ĝtrunc9 =
(
bbb
(1)
1 , bbb

(1)
2 , bbb

(1)
3 , bbb

(1)
4

)
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where

(bbb
(1)
1 , bbb

(1)
2 , bbb

(1)
3 , bbb

(1)
4 ) =

(
v̂vv4 − uuu4Ĝ0 − uuu0Ĝ4, v̂vv5 − uuu5Ĝ0 − uuu4Ĝ1 − uuu0Ĝ5,

v̂vv6 − uuu6Ĝ0 − uuu5Ĝ1 − uuu4Ĝ2 − uuu0Ĝ6,

v̂vv7 − uuu7Ĝ0 − uuu6Ĝ1 − uuu5Ĝ2 − uuu4Ĝ3 − uuu0Ĝ7

)
,

can be computed from the correctly received data. We can rewrite the previous
system simplifying it, since that the information vector uuu3 is known, so we only
need to solve the following system

(xxx1,xxx2)

(
Ĝ3 Ĝ4 Ĝ5 Ĝ6

Ĝ2 Ĝ3 Ĝ4 Ĝ5

)
=
(
bbb
(1)
1 − uuu3Ĝ1, bbb

(1)
2 − uuu3Ĝ2, bbb

(1)
3 − uuu3Ĝ3, bbb

(1)
4 − uuu3Ĝ4

)
obtaining the solution xxx1 = uuu1.

Finally, to recover uuu2, we have the system

(xxx2,uuu3,uuu4)Ĝtrunc9 =
(
bbb
(2)
2 , bbb

(2)
3 , bbb

(2)
4 , bbb

(2)
5

)
where

(bbb
(2)
2 , bbb

(2)
3 , bbb

(2)
4 , bbb

(2)
5 ) =

(
v̂vv5 − uuu5Ĝ0 − uuu0Ĝ5 − uuu1Ĝ4,

v̂vv6 − uuu6Ĝ0 − uuu5Ĝ1 − uuu0Ĝ6 − uuu1Ĝ5,

v̂vv7 − uuu7Ĝ0 − uuu6Ĝ1 − uuu5Ĝ2 − uuu0Ĝ7 − uuu1Ĝ6,

v̂vv8 − uuu8Ĝ0 − uuu7Ĝ1 − uuu6Ĝ2 − uuu5Ĝ3 − uuu0Ĝ8 − uuu1Ĝ7

)
.

Reasoning as in the previous case, this system can be rewritten by

xxx2

(
Ĝ3 Ĝ4 Ĝ5 Ĝ6

)
=
(
bbb
(2)
2 − uuu4Ĝ1, bbb

(2)
3 − uuu4Ĝ2, bbb

(2)
4 − uuu4Ĝ3, bbb

(2)
5 − uuu4Ĝ4

)
obtaining the solution xxx2 = uuu2.

In the general case, for a burst of erasures of length L with decoding delay
T , we can recover the packet uuui, for i = 0, 1, . . . , L− 1, solving the system

(xxxi,xxxi+1, . . . , xL−1,uuuL,uuuL+1,uuuL+i−1) ĜtruncL+T =
(
bbb
(i)
i , bbb

(i)
i+1, . . . , bbb

(i)
i+T−L

)
,

where

bbb
(i)
i+j = vvvi+j+L −

j∑
`=0

uuui+j+L−`Ĝ` −
i−1∑
`=0

uuu`Ĝi+j+L−`,

for j = 0, 1, . . . T −L, obtaining from Lemma 1 that the solution of this system
is xxxi = uuui. The second summation only exist when i ≥ 1.

The following result characterizes convolutional encoders that admit de-
coding of burst of erasures of length up to L with delay T .
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Theorem 2 A systematic encoder G(D) = [Ik Ĝ(D)] ∈ F[D]k×n can recover

a burst of erasures of length L with decoding delay T if the matrix ĜtruncL+T given
by (2) satisfies these conditions

1. the submatrix
(
ĜL ĜL+1 · · · ĜT

)
has full row rank,

2. rowspan
(
ĜL ĜL+1 · · · ĜT

)
∩ rowspan

 ĜL−1 ĜL · · · ĜT−1
...

... · · ·
...

Ĝ1 Ĝ2 · · · ĜT−L+1

 = {0}.

Proof Suppose without loss of generality that the transmission started at time
zero and we have received the information packets (vvv0, vvv1, . . . , vvvi−1) correctly
up to an instant i − 1 and from instant i to time instant i + L − 1 we re-
ceive a burst of erasures. After the burst of erasures we receive the packets
(vvvi+L, vvvi+L+1, . . . ) correctly again.

By the systematicy of G(D) we straightforward recover uuuj , for j ∈ N \
{i, i+ 1, . . . , i+ L− 1}.

Hence, it remains to recover the missing packets (uuui,uuui+1, . . . ,uuui+L−1). If
we regard this burst as unknowns to-be-determined and denote it as xxx =
(xxxi,xxxi+1, . . . ,xxxi+L−1), then, taking into account the systematicity of G(D)
and the structure of Gc∞, it follows that

xxx ĜtruncL+T = bbb

where bbb is a vector that can be computed from the correctly received data up
to time i + T . From Lemma 1, the unknown components of xxx ∈ FLk admit a
unique solution if the corresponding row of ĜtruncL+T is nonzero and independent
of the other columns. Thus, assuming the conditions of the theorem it follows
that xxxi can be uniquely computed, or in other words, we can fully recover uuui.

Next, due to the block-Toeplitz structure of Gc∞ we can apply the same
reasoning for (xxxi+1,xxxi+2, . . . ,xxxi+L−1, vvvi+L), where vvvi+L is known, to recover
xxxi+1. Repeating the same arguments we can compute the remaining xxxj , j =
i+ 2, . . . , i+ L− 1. This concludes the proof. ut

The computation of each erased symbol (and therefore of the decoding)
requires only linear algebra, as already noted in [25,26], and boils down to
solving an associated linear system of equations as described in the proof of
the theorem. Theorem 1, together with bound (1), characterizes convolutional
encoders that admit low delay decoding over burst erasure channels. The en-
coders presented in [5,19] verify the conditions of Theorem 1 with a rate that
achieves the bound (1) and therefore they admit optimal decoding delay. In the
next section we present another instance of such encoders. As the proposed
class of encoders is simple, and contains only zeros and ones, the decoding
becomes straightforward.
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4 Our Construction

Suppose that in the channel only burst of erasures of length L occur. We
first consider the case k > n − k, say, (n − k)λ + γ = k for some integer λ

and γ < n − k. Let G(D) = (Ik Ĝ(D)) ∈ Fk×n, Ĝ(D) =
∑
j≥0 ĜjD

j be a
systematic encoder given by

ĜiL =

O(i−1)(n−k)×(n−k)
In−k

Ok−i(n−k)×(n−k)

 , for i = 1, 2, . . . , λ.

If (n− k) - k, i.e., γ 6= 0, then, we also define

Ĝ(λ+1)L =

(
O(k−γ)×γ O(k−γ)×(n−k)

Iγ Oγ×(n−k)

)
.

The remaining coefficients of Ĝ(D) are null matrices.

Suppose that a burst of erasure of length L occurs at time j. Then, one
can verify that at time instant j + iL, we recover n− k coordinates of uuuj for
i = 1, 2, . . . , λ, and wait until time j+(λ+1)L to retrieve the remaining part of

uuuj , if required. Then, the delay to recover uuuj is T =
⌈

k
n−k

⌉
. Furthermore, due

to the block-Toeplitz structure of the sliding matrix it follows that T is also
the delay for decoding all the remaining erasures of vvvs, s = j+1, . . . , j+L−1.
Assume now for simplicity that γ = 0 to show that the bound in (1) is achieved
with equality. First note that R

1−R = λ for the selected parameters (n−k)λ = k

and R = k/n. Now, it is easy to verify that T = λL and therefore T
L = λ =

R
1−R .

Thus, the proposed construction admits an optimal delay decoding when
only bursts of erasures of length up to L occur. Note that this construction
requires only binary entries, whereas previous contributions (see for instance
[18,19]) require larger finite fields. As a consequience, the decoding of our
construction is computationally more efficient. The case k ≤ n − k readily
follows by considering

ĜL =
(
O Ik

)
and the remaining coefficients of G(D), Gj , j /∈ {0, L} null matrices.

Example 2 Consider the parameters given in Example 1. The construction
described above yields the following matrices

Ĝ0 = Ĝ1 = Ĝ2 = Ĝ4 = Ĝ5 = O4×2, Ĝ3 =


1 0
0 1
0 0
0 0

 , Ĝ6 =


0 0
0 0
1 0
0 1

 .
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So, we have

Ĝtrunc9 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



.

Assume that we have lost the first three packets vvv0, vvv1 and vvv2, in other
words, we need to recover the unknowns uuu0,uuu1 and uuu2 from message. We
denote these missing information packets by xxx0 = (x00, x01, x02, x03), xxx1 =
(x10, x11, x12, x13) and xxx2 = (x20, x21, x22, x23); to recover uuu0 we have to solve
the system

(xxx0,xxx1,xxx2)Ĝtrunc9 =
(
v̂vv3, v̂vv4, v̂vv5, v̂vv6 − uuu3Ĝ3

)
,

where (v̂vv3, v̂vv4, v̂vv5, v̂vv6) is known. In our example, we have that

(u00, u01, u02, u03, u10, u11, u12, u13, u20, u21, u22, u23) Ĝtrunc9

= (u00 u01, u10 u11, u20 u21, u02 u03) .

From the known information of v̂vv3 and v̂vv6, we recover directly the vector uuu0
completely, at time instant 6 because of the form of our submatrices Ĝ3 and
Ĝ6. To recover the rest of the packets uuu1 and uuu2 we repeat the arguments
given in Example 1 but using our construction.
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