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Abstract

1. The inference of pairwise competitive outcomes (PCO) and multispecies competitive ranks and 

intransitivity from empirical data is essential to evaluate how competition shapes plant 

communities. Three categories of methods, differing in theoretical background and data 

requirements, have been used: 1) theoretically sound coexistence theory-based methods, 2) 

index-based methods, and 3) “process-from-pattern” methods. However, how they are related is 

largely unknown.

2. In this study, we explored the relations between the three categories by explicitly comparing three 

representatives of them: 1) relative fitness difference (RFD), 2) relative yield (RY), and 3) a 

reverse-engineering approach (RE). Specifically, we first conducted theoretical analyses with 

Lotka-Volterra competition models to explore their theoretical linkages. Second, we used data 

from a long-term field experiment and a short-term greenhouse experiment with eight herbaceous 

perennials to validate the theoretical findings.

3. The theoretical analyses showed that RY or RE applied with equilibrium data indicated 

equivalent, or very similar, PCO respectively to RFD, but these relations became weaker or 

absent with data further from equilibrium. In line with this, both RY and RE converged with RFD 

in indicating PCO over time in the field experiment as the communities became closer to 

equilibrium. Moreover, the greenhouse PCO (far from equilibrium) were only similar to the field 

PCO of earlier rather than later years. Intransitivity was more challenging to infer because it could 

be reshuffled by even a small competitive shift among similar competitors. For example, the field 

intransitivity inferred by three methods differed greatly: no intransitivity was detected with RFD; 

intransitivity detected with RY and RE was poorly correlated, changed substantially over time 

(even after equilibrium) and failed to explain coexistence.

4. Our findings greatly help the comparison and generalisation of studies using different methods. 

For future studies, if equilibrium data are available, one can infer PCO and multispecies 

competitive ranks with RY or RE. If not, one should apply RFD with density gradient or time-

series data. Equilibria could be evaluated with T tests or standard deviations. To reliably infer 

intransitivity, one needs high quality data for a given method to first accurately infer PCO 

especially among similar competitors.
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Introduction

The inference of long-term competitive outcomes from empirical data is essential to 

understand how competition shapes the structure, dynamics and functioning of plant communities 

(Aschehoug et al. 2016). For instance, to predict and understand plant coexistence, we need to 

explicitly estimate long-term competitive outcomes between plant species (Hart, Freckleton & Levine 

2018), rather than merely the intensity of competition or overall competitive effects and responses 

(Aschehoug et al. 2016). In theory, a more competitive species will ultimately exclude a less 

competitive one over the long term unless sufficient niche differences exist between the two in space 

and time (Gause 1934; Chesson 2000). Therefore, we need to focus on the long-term competitive 

outcomes at equilibrium, rather than the short-term outcomes that do not easily extrapolate to the 

effects of competition on population dynamics. Based on pairwise competitive outcomes (PCO), 

multispecies competitive ranks can be constructed (Keddy & Shipley 1989). If the ranks are not 

hierarchical, intransitive competition (i.e. intransitivity) can emerge as in the “paper-rock-scissors” 

game: species A beats B which beats C which in turn beats A (i.e. A>B>C>A) (Gallien 2017). The 

existence of such intransitivity could promote multispecies coexistence and affect ecosystem 

functioning (Levine et al. 2017; Maynard, Crowther & Bradford 2017).

A number of methods have been developed thus far to infer PCO and thereby multispecies 

competitive ranks and intransitivity from empirical data (e.g. de Wit 1960; Chesson 2000; Ulrich et al. 

2014; see Table 1 for more examples). Given their differences in theoretical background and data 

requirements, we think these methods fall into three categories (Table 1). The first category of 

methods are rooted in coexistence theory, and they infer PCO from parameters in dynamic models 

that describe long-term competition between species (MacArthur & Levins 1967; Tilman 1982; 

Chesson 2000; see Table 1). These methods provide a theoretically sound measure of PCO, 

because they indicate which species, in the absence of niche differences, is the competitive winner 

at equilibrium (Hart, Freckleton & Levine 2018). Among them, relative fitness difference (RFD) 

derived from Chesson’s coexistence theory (Chesson 2000) is the commonly used one in recent 

studies (e.g. Godoy, Kraft & Levine 2014; Chu & Adler 2015). In theory, RFD is largely consistent 

with other measures from classical coexistence theories, e.g. MacArthur and Levins (1967)’s  , May 
𝛫𝑖

𝛫𝑗

(1974)’s , and Tilman (1982)’s R* (Carroll, Cardinale & Nisbet 2011; Letten, Ke & Fukami 2017). 
𝜅𝑖

𝜅𝑗

However, these methods are challenging to apply, because they require a large amount of density A
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gradient or time-series data (often from field experiments) to parameterize dynamic competition 

models. The second category comprises traditional indices that are often calculated by comparing 

the performance of a plant of a given species grown in monoculture (or alone) and mixture (Table 1; 

for a full review, see Weigelt & Jolliffe 2003). Relative yield (RY), i.e. the ratio of a species’ yield in 

mixture to its yield in monoculture (de Wit 1960), is the commonly used among them. The application 

of RY and other indices (e.g. relative mixture response, relative competition intensity) in this category 

requires much less data (often from greenhouse experiments). However, these indices have been 

frequently criticized as they may only indicate short-term rather than long-term competitive outcomes 

(Freckleton & Watkinson 2000; Hart, Freckleton & Levine 2018). The third category refers to the 

“process-from-pattern” methods, which often use statistical tools to infer competition from observed 

species abundance data based on classic community assembly rules (Diamond 1975), e.g. a 

reverse-engineering approach (RE), C-scores, multivariate logistic regression (Table 1). The RE is a 

recently developed method that applies Markov chain models to estimate competition matrices that 

best fit the observed species abundances (Ulrich et al. 2014). Within this category, the RE is the only 

one that can explicitly estimate PCO and has been frequently applied in recent studies (e.g. Soliveres 

et al. 2015; Maynard et al. 2017), but how it relates to methods in the other two categories is not well 

known (but see Soliveres et al. 2018). In short, the three categories of methods not only have 

different theoretical backgrounds, but also often use data from different sources (e.g. field 

experiments, greenhouse experiments, observations), which to some extent characterize different 

conditions of study systems (from equilibrium to non-equilibrium). However, it is largely unknown how 

different methods are related, which hinders the appropriate interpretation and application of them.

In this study, we chose three commonly used methods: RFD, RY and RE, as representatives 

of the three categories, respectively, and thoroughly compared them. As it is impossible to 

comprehensively compare the large number of existing methods (Table 1), and different methods 

within each category share similarities, we chose specific methods as representatives of different 

categories to perform a full comparison. First, we used analytical approaches and simulations with 

Lotka-Volterra competition models to theoretically analyse how the three methods are related to infer 

PCO and multispecies competitive ranks and intransitivity, when using data from equilibrium to non-

equilibrium conditions. Second, we used data from a long-term biodiversity experiment in the field 

and a short-term microcosm experiment in the greenhouse to validate the theoretical findings. Based 

on our results, we discuss other methods in the three categories and previous studies using different A
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methods to draw general conclusions, and also provide recommendations for future studies to 

choose an appropriate method for a particular objective and situation.
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Materials and methods

THEORETICAL BACKGROUND

Three representative methods

(1) Relative fitness difference (RFD)

The RFD between two species  and  is often defined as   with Lotka-Volterra 𝑖 𝑗 𝑓𝑖 𝑓𝑗 =
𝛼𝑗𝑗𝛼𝑗𝑖

𝛼𝑖𝑖𝛼𝑖𝑗

competition models ( ) (Chesson 2013). Note, however, equivalent measures can also be 𝐸𝑞𝑛. 1

derived from other phenomenological or mechanistic competition models (e.g. Carroll, Cardinale & 

Nisbet 2011; Saavedra et al. 2017; Hart, Freckleton & Levine 2018).

{𝑁𝑖, 𝑡 + 1 = 𝑁𝑖, 𝑡𝑒𝑟𝑖(1 – 𝛼𝑖𝑖𝑁𝑖,𝑡 – 𝛼𝑖𝑗𝑁𝑗,𝑡)                        (𝐸𝑞𝑛. 1𝑎)
𝑁𝑗, 𝑡 + 1 = 𝑁𝑗, 𝑡𝑒𝑟𝑗(1 – 𝛼𝑗𝑗𝑁𝑗,𝑡 – 𝛼𝑗𝑖𝑁𝑖,𝑡)                        (𝐸𝑞𝑛. 1𝑏)

where  and , and  and  are biomasses of species  and  at time  and , 𝑁𝑖,𝑡 + 1 𝑁𝑖,𝑡 𝑁𝑗,𝑡 + 1 𝑁𝑗,𝑡 𝑖 𝑗 𝑡 + 1 𝑡

respectively, and  and  are intrinsic growth rates of species  and , respectively, and alphas ( ,  𝑟𝑖  𝑟𝑗 𝑖 𝑗 𝛼𝑖𝑖

, , ) are intraspecific and interspecific competition coefficients.𝛼𝑗𝑗 𝛼𝑖𝑗 𝛼𝑗𝑖

If , species  will outcompete species  in the absence of niche differences (𝑓𝑖 𝑓𝑗 > 1 𝑖 𝑗 1 ―

), because species  is overall more sensitive to competition than species . To estimate the 
𝛼𝑖𝑗𝛼𝑗𝑖

𝛼𝑖𝑖𝛼𝑗𝑗
𝑗 𝑖

parameters in , data on performance of species at very low densities (to estimate  and ) 𝐸𝑞𝑛. 1  𝑟𝑖  𝑟𝑗

and with different densities of conspecific competitors (to estimate  and ) and heterospecific 𝛼𝑖𝑖 𝛼𝑗𝑗

ones (to estimate  and ) are required. The required data can be obtained by experimentally 𝛼𝑖𝑗 𝛼𝑗𝑖

creating density gradients (Godoy, Kraft & Levine 2014) or using time-series data of population 

dynamics with sufficient variation in densities (Chu & Adler 2015).

Relative yield (RY)

The RY is calculated as a species’ yield in mixture divided by its yield in monoculture, often 

using data from the design of replacement series where total density is held constant (sensu de Wit 

1960). This does not specify whether the data should be from study systems at equilibrium or not, A
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and in fact RY is often calculated with “non-equilibrium” data from short-term greenhouse 

experiments (Weigelt & Jolliffe 2003). Species  is supposed to outcompete species  if RY of 𝑖 𝑗

species  is greater than that of species  (de Wit 1960), but the theoretical basis for this is rather 𝑖 𝑗

elusive. Interestingly, RY and related indices are also used to indicate niche differentiation between 

species, since they appear to reflect the relative strength of intraspecific vs. interspecific competition 

(by comparing monoculture vs. mixture treatments) (Jolliffe 2000).

(2) The reverse-engineering approach (RE)

The RE estimates PCO by using Markov chain models to 1) randomly generate a large 

number (100,000) of competition matrices whose elements  specify the probability that species  𝐶𝑖𝑗 𝑖

outcompetes species , and  (if , species  outcompetes species ), 2) transform 𝑗 𝐶𝑗𝑖 = 1 ― 𝐶𝑖𝑗 𝐶𝑖𝑗 > 𝐶𝑗𝑖 𝑖 𝑗

the competition matrices to patch transition matrices from which species abundances can be 

predicted, and 3) select the competition matrix that best fits the observed abundances of species (for 

more details, see Ulrich et al. 2014). If the goodness-of-fit of the best fitting matrix ( ) is low, it 𝑟𝑆

indicates that forces other than competition (e.g. niche-based processes) may also play important 

roles in determining species abundances. The RE can be applied to temporal, spatial, or temporal × 

spatial abundance data, and allows one to infer PCO for many species without doing a large number 

of pairwise competition experiments (e.g. Soliveres et al. 2015).

Multispecies competitive ranks and intransitivity

Using PCOs inferred by any of the methods above, multispecies competitive ranks and 

intransitivity can be constructed. The competitive ranks can simply be constructed by counting the 

number of wins each species has. To measure intransitivity, six indices have been proposed to 

capture different elements of topological variation in an intransitive network (Laird & Schamp 2018) 

(see Appendix S1 for details): Slater’s and Petraitis’s  and Ulrich’s  (overall degree of intransitivity), 𝑖 𝐼

Kendall and Babington Smith’s  (proportion of three-species intransitive loops), Bezembinder’s  𝑑𝑠 𝛿

(proportion of pairs in intransitive relationships), unbeatability ( ; whether there is an “unbeatable” 𝑢

species, 1, or not, 0), and always-beatability ( ; whether there is an “always beatable” species, 1, or 𝑎

not, 0).

THEORETICAL TESTA
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First, we used the analytical approach with the two-species Lotka-Volterra model ( ) to 𝐸𝑞𝑛. 1

derive the relations between RFD, RY and RE in indicating PCO using data at equilibrium and before 

equilibrium. To seek generality, we also derived the relations using other competition models (e.g. 

Beverton-Holt model, annual plant model; see Table S1 in Appendix S2). For the “before-equilibrium” 

case where it turned out analytical solutions are not possible, however, we used simulations to 

explore the relations (see below). The details of these theoretical analyses are in Appendix S2.

Second, we used numerical simulations with the Lotka-Volterra model to explore how the 

relations changed as the systems move away from equilibrium (Appendix S2). In the simulations, we 

also had eight species and 28 two-species pairs as in the experimental test (see below). Model 

parameters were randomly drawn from the range of parameters in the Lotka-Volterra models fitted 

with the field experiment (see below), i.e. with intrinsic growth rates, intra- and inter-specific 

competition coefficients randomly drawn from 0.2-2, 0.03-0.1 and 0.001-0.05 respectively. We used 

the drawn competition coefficients to directly calculate RFD. For RY and RE, we first ran the 

simulations of monocultures and two-species pairs for 100 steps representing 10 years (i.e. 10 steps 

per year) to be comparable with the field experiment, and recorded biomasses at each step. 

Equilibrium was achieved around year 4 in most of simulations (see Appendix S2). We then used 

mean biomass of monocultures and two-species mixtures at three continuous steps around year 1 

(before-equilibrium point) and around year 10 (at equilibrium) to calculate RY. For example, for year 

1 we used biomasses at steps 0.9, 1 and 1.1 years. Similarly, we applied RE to the time-series (i.e. 

the three steps) of species relative abundances in two-species mixtures (biomass of each species / 

total biomass) also around year 1 and 10. Note, although the RE was initially developed for 

multispecies cases (Ulrich et al. 2014), we applied it to two-species cases to make it comparable with 

the other two methods. The criteria of three methods to indicate if species  outcompetes species  𝑖 𝑗

are: ,  and , respectively. All the simulations were performed with the 
𝛼𝑗𝑗𝛼𝑗𝑖

𝛼𝑖𝑖𝛼𝑖𝑗
> 1 𝑅𝑌𝑖 > 𝑅𝑌𝑗 𝐶𝑖𝑗 > 𝐶𝑗𝑖

“deSolve” package (Soetaert, Petzoldt & Setzer 2010) in R 3.4.3 (R Core Team 2018).

Based on PCO inferred by each method, we constructed multispecies competitive ranks for 

the eight species. For intransitivity, we first theoretically constructed 30 multispecies communities 

(species richness>2) as in the experimental test (see below), and then calculated six intransitivity 

indices for each community based on the PCO. We also counted the number of three-species 

intransitive loops among the eight species as another measure of intransitivity.A
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EXPERIMENTAL TEST

We used data from a long-term field experiment and a short-term greenhouse experiment to 

validate the findings in the theoretical test. Below we briefly describe the two experiments (for details, 

see Appendix S3).

Field experiment

The “dominance” experiment is a long-term grassland biodiversity experiment conducted from 

2002 to 2015 in Jena (Roscher et al. 2004). The experiment includes nine potentially dominant 

perennial species: two forbs (Geranium pratense, Anthriscus sylvestris), two legumes (Trifolium 

pratense, T. repens), and five grasses (Alopecurus pratensis, Arrhenatherum elatius, Dactylis 

glomerata, Phleum pratense and Poa trivialis). Our analyses excluded A. sylvestris due to its 

absence in the greenhouse experiment. Thus, we used data from 132 plots (1 x 1 m2), representing 

66 different compositions of communities across five diversity levels (1, 2, 3, 4 and 6 species, with 8, 

28, 16, 10 and 4 compositions, respectively), with each composition replicated twice. Species-level 

annual aboveground biomass was determined each year.

Greenhouse experiment

A microcosm experiment with the eight species was conducted from April to September in 

2011, and repeated in 2012, in a greenhouse in Zurich. An individual of a species either grew alone 

(mono1), with a conspecific individual (mono2), or with a heterospecific individual (mix), in pots (11 × 

11 × 21 cm3). Each treatment was replicated twice, resulting in 88 pots in total. Species-level 

aboveground biomass was determined in June and September each year.

PCO and multispecies competitive ranks and intransitivity

As in the theoretical test, we applied each method to the field and greenhouse experiments to 

calculate PCO and multispecies competitive ranks and intransitivity, and count the number of three-

species intransitive loops.

(1) RFD
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For the field experiment, we first fitted exponential growth models with annual monoculture 

biomass data from 2002 to 2003, during which all species appeared to experience exponential 

growth, to estimate their intrinsic growth rates. We then fitted a joint two-species Lotka-Volterra 

model with time-series biomass data (2002-2015) of all two-species mixtures to simultaneously 

estimate all intra- and inter-specific competition coefficients. Similarly, for the greenhouse 

experiment, we estimated intrinsic growth rates with mono1 biomass data in June and September, 

and competition coefficients with mono2 and mix data in June and September. After the models for 

the two experiments were fitted, we used posteriors of competition coefficients to calculate posterior 

RFD and take their median as an estimate of RFD. To assess the statistical uncertainty of the fits, we 

calculated a measure of reliability that could range from c. 0.5 to 1: the larger the values are, the 

more reliable the model fits and estimated RFD are. All the model fittings were performed under a 

Bayesian framework with the “rstan” package (Stan Development Team 2018) in R 3.4.3 (R Core 

Team 2018). For more details of fitting models, see Appendix S4.

(2) RY

For the field experiment, we calculated RY using biomass data from monocultures and two-

species mixtures at each year (2002-2015), but in the main text we only presented the results of 

2015 where communities appeared to be closest to equilibrium (see Appendix S5 for the results of 

other years, and equilibrium evaluation below in Data Analysis). As the monoculture biomass of P. 

pratense in 2015 was zero, we used its monoculture data from 2014. For the greenhouse 

experiment, we calculated RY using mono1 and mix data by averaging the biomasses in June and 

September.

(3) RE

 For the field experiment, we applied RE with data of species relative abundance (biomass of 

each species divided by total biomass) of two “spatial” replicates of each two-species mixture at each 

year (2002-2015), but similarly here we only presented the results of 2015 (see Appendix S6 for 

those of other years). For the greenhouse experiment, we applied RE with data of two replicates of 

each two-species mixture.

DATA ANALYSISA
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For both theoretical and experimental tests, we tested how PCO (Phi correlations), 

multispecies competitive ranks (Wilcoxon signed-rank tests) or values of each intransitivity index (Phi 

or Pearson correlations depending whether the variable is binary or not) inferred by the three 

methods were related. Moreover, we checked whether three-species intransitive loops based on 

different methods differed (Appendix S7). We also used Pearson correlations to test how each 

intransitivity index is related to extinction rates (i.e. number of species lost by 2015 divided by total 

number of species; lower extinction rates indicate greater coexistence) of 30 multispecies 

communities in the field experiment (Appendix S8). To evaluate whether and when the equilibrium is 

achieved in the field experiment, we used pairwise T tests to test whether the biomasses of species 

(in monocultures or two-species mixtures) in the current year were significantly different from those in 

the previous year (Appendix S9). A significant difference should indicate the system is not at 

equilibrium. We also used standard deviations to evaluate the equilibrium but the results are similar 

(for the details, see Appendix S9). We illustrated all the correlations using the ‘ggpairs’ function in the 

GGally R package (Schloerke et al. 2017), and plotted competitive networks of eight species using 

igraph R package (Csardi & Nepusz 2006). All the analyses were performed in R 3.4.3 (R Core 

Team 2018).
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Results

PCO

Our analytical and simulation tests demonstrated that, PCO inferred by RY or RE with data 

from study systems at equilibrium were mathematically equivalent or very similar respectively to 

those inferred by RFD, regardless of competition models used (Fig. 1a; for details see Appendix S2). 

This is because  and mostly  if  (Appendix S2). However, the 𝑅𝑌𝑖 ― 𝑅𝑌𝑗 > 0 𝐶𝑖𝑗 ― 𝐶𝑗𝑖 > 0 𝑓𝑖 𝑓𝑗 > 1

simulations showed that these relationships became weaker the further the system was from 

equilibrium, where  and  both were affected not only by competition coefficients (as 𝑅𝑌𝑖 ― 𝑅𝑌𝑗 𝐶𝑖𝑗 ― 𝐶𝑗𝑖

in the equilibrium case) but also by species’ intrinsic growth rates and previous biomass or density 

(Fig. 1a and Appendix S2).

In line with the theoretical findings, our tests with the field experiment showed that PCO 

inferred by RE (using data from 2015) were strongly positively correlated with those inferred by RFD 

(Fig. 1b), but for RY its correlation with RFD peaked at 2010 (Fig. S6 in Appendix S5). Moreover, the 

correlations between PCO inferred by RY or RE and those by RFD became stronger over time (Fig. 

S6, and Fig. S9 in Appendix S6), as the communities became closer to equilibrium (Appendix S9). 

Note the equilibrium in monocultures and two-species mixtures was apparently achieved around 

2005 and 2008 respectively (Appendix S9). The PCO inferred by the three methods were not 

correlated in the greenhouse experiment (Fig. 1a), and overall the greenhouse PCO were only 

positively correlated with those in the field experiment of earlier (2003-2005) rather than later years 

(Fig. S6 and S9). The reliabilities of the field RFD (mean=0.90 and most >0.80) were much greater 

than the greenhouse RFD (mean=0.79, with many lower than 0.75) (Figs S4-S5 in Appendix S4).

Multispecies competitive ranks and intransitivity

Multispecies competitive ranks inferred by three methods showed equilibrium vs. non-

equilibrium patterns similar to PCO (Table 2 and Figs 2-3; also see Table S4 in Appendix S5 and 

Table S6 in Appendix S6). In the simulations, we found positive correlations between the three 

methods with equilibrium data in inferring most of intransitivity indices (Fig. 4) (also see Appendix 

S7), but the correlations were overall weaker than those for PCO with equilibrium data, and also 

tended to get much weaker when the system was far from equilibrium (Fig. 4). The tests with the field A
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experiment showed that there was no intransitivity inferred by RFD (Fig. 5). The RY and RE detected 

intransitivity but their intransitivity values (and three-species intransitive loops) were poorly correlated 

and also changed substantially over time (Appendix S5-S6). Moreover, the three methods overall 

inferred very different values of six intransitivity indices in the greenhouse experiment (Fig. 5), and 

the values were also poorly correlated with the field ones (Fig. 5; Fig. S8 in Appendix S5 and Fig. 

S11 in Appendix S6). In addition, all the intransitivity indices were poorly or counterintuitively 

correlated with extinction rates (Appendix S8).
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Discussion

Among the three categories, only the coexistence theory-based methods explicitly separate 

the forces determining competitive outcomes from those causing niche differences, through the strict 

analysis of population dynamics (Tilman 1982; Chesson 2000). Therefore, they provide a 

theoretically robust measure of PCO (Hart, Freckleton & Levine 2018), in comparison to the other 

two categories whose inferences are mainly based on species biomasses or abundances (state 

variables). Interestingly, however, our theoretical analyses of the three representative methods 

showed that, RY or RE applied to data at equilibrium, give equivalent or very similar estimates of 

PCO respectively to RFD. Note, this also implies RY is irrelevant to niche differences in such case, 

which questions whether RY could, as often claimed (Jolliffe 2000), indicate niche differentiation 

between species. As different methods within each category share similarities, our findings could to 

some extent generalize beyond the three chosen representative methods. For example, as RFD can 

also be derived from a wide range of other competition models (e.g. resource competition model), 

our findings should therefore also apply when other coexistence theory-based meaures (e.g. 

Tilman’s R*) are used to infer PCO. Moreover, most of other index-based methods also compare 

monoculture vs. mixture treatments as RY (e.g. relative mixture response, relative interaction index), 

while some compare grown-alone vs. mixture treatments (e.g. relative competition intensity). As the 

formulas of these indices deviate from that of RY, our theoretical analyses showed that with 

equilibrium data they could indicate PCO either same to (relative mixture response) or more 

frequently different from (relative interaction index, relative competition intensity) those inferred by 

RY and RFD (for details, see Appendix S2). Lastly, among the “process-from-pattern” methods to 

tease apart the relative importance of competition vs. other forces (such as niche-based processes, 

stochasticity) in community assembly, the RE is the only one which can explicitly give competitive 

outcomes between species. However, our findings of the close link between RE and RFD may also 

help the other “process-from-pattern” methods (e.g. C-scores, the null model approach) to build their 

basis of inferring community assembly on species coexistence theory.

In support of the theoretical results, our test with the field experiment showed that both RY 

and RE converged with RFD in indicating PCO over time as communities got closer to equilibrium. 

However, for RY the convergence peaked in 2010 rather than 2015, which may be because of the 

deterioration of monoculture performance for some species after 2010 (Appendix S9), possibly due 

to the accumulation of pathogens over time (Cortois et al. 2016). In line with our findings, a former A
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study found that RY using long-term, presumably equilibrial, data was positively correlated with 

Tilman’s R* (Fargione & Tilman 2006). Moreover, some recent studies also showed that RY at or 

close to equilibrium could reasonably measure the degree to which Lotka-Volterra models 

parameterized with monoculture and biculture data capture species abundances of polycultures 

(Halty et al. 2017; Fort 2018). Our findings also suggest that the former applications of the RE with 

equilibrium data (e.g. Soliveres et al. 2015; Ulrich et al. 2016) should reliably indicate PCO. In short, 

when only the equilibrium data are available, both RY and RE could be a reasonably good proxy of 

RFD to infer PCO.

In our study, to estimate RFD, we fitted Lotka-Volterra models under a Bayesian framework. 

For all competition coefficients in a model, we had 10000 posterior values to calculate 10000 

posterior RFD ( ). If RFD between species  and  > 1, species  is more competitive than 
𝛼𝑗𝑗𝛼𝑗𝑖

𝛼𝑖𝑖𝛼𝑖𝑗
𝑖 𝑗 𝑖

species , and vice versa. Our “reliability” analyses showed that the estimates of the field RFD were 𝑗

much more reliable than the greenhouse ones, because for the former on average most of their 

posterior RFD (90%) agreed with the estimates (either > 1 or < 1), a lot greater than that for the latter 

(79%) (Appendix S4). Moreover, compared to the greenhouse one, the posteriors of competition 

coefficients in the field experiment yielded much smaller SD relative to means (Appendix S4). These 

results are likely because the field experiment consists of long time-series data with substantial 

density variations. However, the data from the greenhouse experiment (and also from most of other 

greenhouse experiments) have very limited density gradients, and this may have led to less accurate 

estimation of model parameters.

In contrast to the equilibrium case, both RY and RE only poorly predicted PCOs in non-

equilibrium systems. This is because the RY and RE calculated from non-equilibrium data are 

affected not only by competition coefficients (as in the equilibrium cases) but also by species’ growth 

rates, previous biomass or density (Appendix S2) (Freckleton & Watkinson 2000). This suggests that 

the use of RY with short-term greenhouse data in many former studies (Table 1) probably fail to 

correctly indicate PCO. In line with this, our experimental test showed that the greenhouse PCO 

were only positively correlated with the field PCO from earlier rather than later years. In the non-

equilibrium cases, therefore, PCO could only be reliably inferred from RFD by fitting competition 

models with density gradient or time-series data. However, if the required data are not of high quality 
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(as in our greenhouse experiment), RFD might not make accurate inferences either (Appendix S4), 

which may explain the poor correlations between the greenhouse and field RFD.

Multispecies competitive ranks inferred by three methods showed similar equilibrium vs. non-

equilibrium patterns as PCO. However, competitive relationships among multiple species are more 

subtle when their competitive ranks are not hierarchical, as intransitivity indices were much more 

sensitive to the methods used and the condition of study systems (at equilibrium or not). This is 

because intransitivity tended to occur mainly among similar competitors ("weak intransitivity") (see 

Fig. S12 in Appendix S7; Soliveres & Allan 2018). Therefore, even a small shift in competitive 

outcomes could reshuffle intransitive relationships. In theory, RY or RE with equilibrium data should 

indicate the same or similar intransitivity as RFD, but our experimental tests showed that the three 

methods detected very different values of intransitivity. For example, no intransitivity was detected at 

all with RFD in the field experiment. Both RY and RE detected intransitivity but their values of 

intransitivity (across all the six indices capturing different topologies of an intransitive network) were 

poorly correlated and also changed substantially over time (Appendices S5-S6). Moreover, the 

detected intransitivity failed to explain species coexistence (Appendix S8), which may imply the 

estimates of intransitivity are not very reliable. These results suggest that the intransitivity inferred by 

RY or related indices using short-term (often greenhouse) data in former studies (e.g. Keddy & 

Shipley 1989; Grace, Guntenspergen & Keough 1993; Shipley 1993) are probably not reliable. 

Moreover, our findings also call for stricter evaluation when inferring intransitivity by RE with 

equilibrium data (e.g. Soliveres et al. 2015) and by RFD with density gradient data (Godoy et al. 

2017). In short, all this makes it generally challenging to accurately infer intransitivity regardless of 

the methods, unless there are high quality data to allow a given method to accurately infer 

competitive outcomes among similar competitors.

Choosing an appropriate method

Based on our findings, we recommend future studies to choose appropriate methods 

depending on questions of interest and data availability.

1) PCO. If data of two-species mixtures and monocultures from study systems at or close to 

equilibrium are available, one can choose RY or RE (or related methods) to infer PCO, because 

in such cases both RY and RE could reasonably approximate RFD. The application of RE does A
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not need monocultures which may often be unavailable or of low quality and therefore the RE can 

be more widely applied. Such “equilibrium” data may be available in long-term experiments (e.g. 

long-term biodiversity experiments) or observations of natural communities. Equilibrium of study 

systems could be evaluated with methods such as T tests or SD by comparing temporal or 

spatial samples (Appendix S9). If “equilibrium” data are not available (where RY or RE could not 

properly indicate PCO), however, one should apply RFD (or related methods) to density gradient 

or time-series data with sufficient variation in population densities, to accurately estimate PCO.

2) Multispecies competitive ranks and intransitivity. Our recommendations for inferring multispecies 

competitive ranks are similar to those for PCO. However, for inferring intransitivity, which is also 

derived from PCO but very sensitive to even a small shift of PCO among similar competitors, our 

recommendations are stricter. In other words, to reliably infer intransitivity, one needs high quality 

data for a given method (e.g. unambiguous equilibrium data for RY and RE, and a large amount 

of density gradient or time-series data with sufficient density variations for RFD) to first accurately 

infer PCO especially among similar competitors.
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Table 1 The three categories of methods and their representatives to infer pairwise competitive outcomes and multispecies competitive 

ranks and intransitivity.

Category Theory, representative, related methods
Data 

requirement
Merits and limitations Applications

Coexistence 

theory-based 

methods

Theory: Coexistence theory

Representative: Relative fitness difference 

(Chesson 2000)

Related methods: R* (Tilman 1982),   
𝛫𝑖

𝛫𝑗
 

(MacArthur & Levins 1967), (May 1974)
𝜅𝑖

𝜅𝑗

Time-series or 

density gradient 

data

Merits: theoretically sound

Limitations: data 

requirement, model 

parameterization

Relative fitness difference (e.g. 

Godoy, Kraft & Levine 2014; Godoy 

et al. 2017);

Related methods (applications of R* 

reviewed in Miller et al. 2005)

Index-based 

methods

Theory: theory implicit

Representative: Relative yield (de Wit 

1960)

Related methods: e.g. relative mixture 

response, relative interaction index, 

relative competition intensity, and many 

other indices (reviewed in Weigelt & Jolliffe 

2003)

Monoculture (or 

grown-alone) 

and mixture data

Merits: easy to apply

Limitations: theory 

implicit; not explicitly 

separating competitive 

differences from niche 

differences 

Relative yield (e.g. Keddy & Shipley 

1989; Walck, Baskin & Baskin 1999; 

Perkins, Holmes & Weltzin 2007);

Related methods (see examples in 

Weigelt & Jolliffe 2003)
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“Process-

from-pattern” 

methods

Theory: community assembly rules 

(Diamond 1975)

Representative: The reverse-engineering 

approach (Ulrich et al. 2014)

Related methods: C-scores (Stone & 

Roberts 1990), the null model approach 

(Gotelli & Graves 1996), multivariate 

logistic regression (Ovaskainen, Hottola & 

Siitonen 2010)

Temporal, spatial 

or temporal × 

spatial species 

abundance data

Merits: easy to apply 

(especially with 

multispecies 

communities)

Limitations: not explicitly 

separating competitive 

differences from niche 

differences

The reverse-engineering approach 

(e.g. Soliveres et al. 2015; Ulrich et 

al. 2016);

Related methods (Gotelli & Graves 

1996; Burns 2007; Ovaskainen, 

Hottola & Siitonen 2010)
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Table 2 Results of Wilcoxon signed-rank tests of competitive ranks of eight species based on the three different methods (relative fitness 

difference: RFD, relative yield: RY, the reverse-engineering approach: RE), in a) the simulation test and b) the experimental test. In the 

simulation test, each method is applied to equilibrium (EQM) and before-equilibrium (bef-EQM) conditions. In the experimental test, each 

method is applied to the field experiment (field) and the greenhouse experiment (GH). For the field experiment, both RY and RE used data 

from 2015. Numbers are the P values of Wilcoxon signed-rank tests.

a) RFD (EQM) RY (EQM) RE (EQM) RY (bef-EQM) RE (bef-EQM)

RFD (EQM) 1.000 0.850 0.430 0.730

RY (EQM) 0.850 0.430 0.730

RE (EQM) 0.345 0.526

RY (bef-EQM) 1.000

RE (bef-EQM)

b) RFD (field) RY (field) RE (field) RFD (GH) RY (GH) RE (GH)

RFD (field) 0.281 0.168 0.393 0.292 0.149

RY (field) 0.546 0.784 1.000 0.386

RE (field) 0.525 0.671 0.230

RFD (GH) 1.000 0.393

RY (GH) 0.202

RE (GH)
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Fig. 1 Phi correlations of PCO between eight species (28 pairs in total) based on the three different methods (relative fitness difference: 

RFD; relative yield: RY; the reverse-engineering approach: RE), in a) the simulation test and b) the experimental test. In the simulation 

test, each method is applied to equilibrium (EQM) and before-equilibrium (before-EQM) conditions. In the experimental test, each method 

is applied to the field experiment (field) and the greenhouse experiment (GH). For the field experiment, both RY and RE used data from 

2015. Significance of the correlations is indicated as *P < 0.05; **P < 0.01; ***P < 0.001. The lines in the lower diagonal are based on 

linear regressions, and the grey area indicates the 95% confidence interval. Data points are slightly jittered to improve readability.
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Fig. 2 Competitive ranks and networks of eight simulated species based on the three different methods (relative fitness difference: RFD; 

relative yield: RY; the reverse-engineering approach: RE), in the simulation test. Each method is applied to a-c) equilibrium (EQM) and d-

e) before-equilibrium (bef-EQM) conditions. In the networks, node sizes are proportional to species’ competitive ranks (i.e. nodes are 

larger if ranks are higher), and arrows point to the winner in competition.
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Fig. 3 Competitive ranks and networks of eight species based on the three different methods (relative fitness difference: RFD; relative 

yield: RY; the reverse-engineering approach: RE), in the experimental test. Each method is applied to a-c) the field experiment (field) and 

d-e) the greenhouse experiment (GH). For the field experiment, both RY and RE used data from 2015. In the networks, node sizes are 

proportional to species’ competitive ranks (i.e. nodes are larger if ranks are higher), and arrows point to the winner in competition.
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Fig. 4 Pearson correlations of each of intransitivity indices (Slater’s and Petraitis’s , Ulrich’s , Kendall and Babington Smith’s , 𝑖 𝐼 𝑑

Bezembinder’s , unbeatability  and always-beatability ) derived from pairwise competitive outcomes based on each of the three 𝛿 𝑢 𝑎

different methods (relative fitness difference: RFD; relative yield: RY; the reverse-engineering approach: RE), in the simulation test. Each 

method is applied to a-c) equilibrium (EQM) and d-e) before-equilibrium (before-EQM) conditions. Significance of correlations is indicated 

as *P < 0.05; **P < 0.01; ***P < 0.001. The lines in the lower diagonal are based on linear regressions, and the grey area indicates the 

95% confidence interval. Data points are slightly jittered to improve readability.
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Fig. 5 Pearson correlations of each of intransitivity indices (Slater’s and Petraitis’s , Ulrich’s , Kendall and Babington Smith’s , 𝑖 𝐼 𝑑

Bezembinder’s , unbeatability , and always-beatability ) derived from the pairwise competitive outcomes based on each of the three 𝛿 𝑢 𝑎

different methods (relative fitness difference: RFD; relative yield: RY; the reverse-engineering approach: RE), in the experimental test. 

Each method is applied to the field experiment (field) and the greenhouse experiment (GH). For the field experiment, both RY and RE 

used data from 2015, and no intransitivity was detected with RFD so its correlations with others are NA. Significance of correlations is 

indicated as *P < 0.05; **P < 0.01; ***P < 0.001. The lines in the lower diagonal are based on linear regressions, and the grey area 

indicates the 95% confidence interval. Data points are slightly jittered to improve readability.
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