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Nonaxisymmetric Hall instability: A key to understanding magnetars
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It is generally accepted that the nonlinear, dynamical evolution of magnetic fields in the interior of neutron
stars plays a key role in the explanation of the observed phenomenology. Understanding the transfer of energy
between toroidal and poloidal components, or between different scales, is of particular relevance. In this Rapid
Communication, we present the first three-dimensional (3D) simulations of the Hall instability in a neutron star
crust, confirming its existence for typical magnetar conditions. We compare our results to estimates obtained by a
linear perturbation analysis, which discards any interpretation as numerical instabilities and confirms its physical
origin. Interestingly, the Hall instability creates locally strong magnetic structures that occasionally can make the
crust yield to the magnetic stresses and generates coronal loops, similar to the way solar coronal loops find their
way out through the photosphere. This supports the viability of the mechanism, which has been proposed to
explain magnetar outbursts.
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Among the many observational faces of neutron stars,
magnetars—highly magnetized, slowly rotating, isolated neu-
tron stars that sporadically show violent transient activity—
have received much attention in the past decade. Understand-
ing their puzzling behavior, arguably caused by their magnetic
activity, is one of the most active research areas of neutron
star physics. In the magnetar scenario, one usually appeals to
the creation or existence of small-scale magnetic structures
to justify the observed phenomenology [1–4]. For instance,
observational evidence [5] favors small structures emerging
from the surface, similar to the sunspots in the solar corona
[6]. The details about how exactly such small-scale magnetic
structures are created are under debate, but they must have
their origin in the dynamics of the interior, in particular of the
neutron star crust.

The evolution of the magnetic field in a neutron star (NS)
crust is governed by the combined action of Ohmic dissipation
and the Hall drift [7,8]. In the presence of a strong field, as in
magnetars, the nonlinear Hall drift dominates and has been
proposed to be the main phenomenon responsible for the gen-
eration of small scales through the so-called Hall instability
[9] (hereafter RG02). The occurrence of the Hall instability in
a real neutron star has been somewhat controversial, in part
because of the lack of numerical simulations able to repro-
duce the strong-field regime under realistic conditions. The
first two-dimensional (2D) simulations of the magnetic field
evolution in NS crusts [10–14] did not find strong evidence
of such instability, but they were restricted to axisymmetric
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models and moderate magnetization, for numerical reasons.
A first three-dimensional (3D) nonlinear study in a periodic
box [15] concluded that any instabilities are overwhelmed
by a turbulent Hall cascade. Conversely, Ref. [16] confirmed
the occurrence of the instability showing that, because the
unstable modes have a relatively long wavelength, it is sup-
pressed on a cubic domain with periodic boundary conditions,
but it arises on a thin slab where one of the spatial lengths
is longer than others. This is precisely the geometry of a
neutron star crust, a thin spherical shell (≈1 km) of radius
R ≈ 12 km.

We must note the distinction between the resistive Hall
instability, which is essentially a tearing mode [17,18], and
ideal instabilities which operate under infinite conductivity,
for example, the density-shear instability requiring a den-
sity gradient [19,20] or the fast collisionless reconnection
observed in the whistler frequency range [21]. Indeed, the
growth times of the Hall instability modes become increas-
ingly large with vanishing resistivity. Another relevant issue is
that, in spherical geometry, the instability may be suppressed
for the axisymmetric modes. Thus, 2D simulations could not
help resolving the controversy, and only recently [22–24] have
3D simulations been possible.

In this Rapid Communication, we present the first 3D
simulations of the Hall instability for a model with a strong
toroidal field in a NS crust, confirming its occurrence. We
show how small magnetic structures are naturally created and
drift toward the star’s poles. Although similar structures had
been observed before in previous simulations [22,23,25], their
actual origin and the true nature of a possible instability had
not been settled. We further present a linear stability analysis
in a spherical shell that gives similar results to the nonlinear
simulations, thus reinforcing our conclusion that the Hall
instability is actually at the origin of the observed magnetar
activity.
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To a very good approximation, the crust can be consid-
ered a one-component plasma, where only electrons can flow
through the ionic lattice. Since ions are fixed, there is no mass
motion, and the induction equation reduces to

∂ �B
∂t

= −∇ ×
(

η∇ × �B + c

4πene
(∇ × �B) × �B

)
, (1)

where c is the speed of light, η = c2/4πσ is the magnetic
diffusivity, σ is the electrical conductivity, e is the elementary
charge, and ne is the electron number density. We consider a
background toroidal field of the form

B0 = sin θ
f (r)

r
�eφ (2)

and evolve it by numerically solving Eq. (1) inside a spherical
shell, using a version of the PARODY 3-D MHD code [26,27]
suitably adapted to NSs [22,23]. We impose vacuum boundary
conditions at the exterior of the star and superconductor
boundary conditions at the base of the crust, not allowing the
magnetic field to penetrate into the core. We consider a crust
of uniform electron number density ne = 2.5 × 1034 cm−3

and electric conductivity σ = 1.8 × 1023 s−1, and we express
the magnetic field in units of B14 = B/1014 G. We have de-
cided to study simplified models with constant density and
conductivity for two reasons. First, this allows us to distin-
guish between the families of resistive and ideal instabilities
that may operate in the electron-MHD regime. Namely, a re-
alistic crust with stratified density and composition is subject
to both instabilities, whereas our setup suppresses the ideal
density-shear instability [20], but permits the resistive one
[9] to grow. Second, this choice also allows us a more direct
comparison to previous works.

To explore how our results depend on the thickness of the
layer where the magnetic field is confined, we have considered
two cases: a realistic one where the inner radius of the crust
Rin = 0.9RNS (hereafter model A) and another with Rin =
0.5RNS (hereafter model B). For structures with a length-scale
L, measured in km, the Hall timescale is tH = 4πeneL2/cB =
16L2/B14 kyr, and the Ohmic dissipation timescale tD =
4πσL2/c2 = 0.8L2 Myr. The ratio tD/tH (equivalent to the
magnetic Reynolds number) is 50B14.

In general, purely azimuthal magnetic fields, as our back-
ground field (2), cannot be in Hall equilibrium; however, their
evolution maintains their azimuthal structure and does not
generate any radial or meridional component, a result that
has been confirmed by axisymmetric simulations. This is also
the case in 3D simulations provided that nonaxisymmetric
perturbations are not included in the initial conditions. There-
fore, a strong indication of the operation of the resistive Hall
instability is the growth of nonaxisymmetric structures, even if
the background field drifts at the same time in the meridional
and radial direction.

To test this hypothesis, we have performed 3D simulations
of the initial field given by Eq. (2) with

f (r) = B̃RNS

(
0.5

RNS − Rin

)3

(RNS − r)2(r − Rin),

where B̃ is a normalization parameter, chosen so that the
maximum value attained by the magnetic field inside the crust

FIG. 1. Magnetic field lines and magnetic field intensity map (in
color scale) on the star surface, at t = 3 kyrs for model A.

is 2 × 1015G. We have used this particular profile due to its
similarity to the profile studied in RG02. Furthermore, we also
include nonaxisymmetric perturbations, with a flat spectrum,
exciting the azimuthal l = m modes from 1 to 40. Starting
from these initial conditions, we find that there is a continuous
growth of the nonaxisymmetric modes with the appearance
of zones with alternating inward and outward magnetic field.
While this is happening, the magnetic field drifts toward the
northern hemisphere, as in the axisymmetric simulations.

In Fig. 1, we show an illustration of a snapshot during
the evolution of model A. Besides the global drift toward
the north pole, we find that many small-scale structures arise.
Locally, the magnetic field intensity in some regions is about
one order of magnitude higher than the average value. This
figure corresponds to model A, but the qualitative behavior is
similar in both models. However, there is a clear quantitative
distinction. In model A, the number of structures in the
azimuthal direction is 18, whereas in model B the number of
zones is 8 as we can see in Fig. 2, where we compare their
internal structure (at a radius of r = 0.95RNS and r = 0.75RNS

for models A and B respectively), after the saturation of the
instabilities. Besides, the growth time is consistently slower
for model B. This pattern is visible in spectral space, as the
peak of the cumulative distribution is m ∼ 20 for the thin crust
(Fig. 3) and m ∼ 10 for the thicker one.

To confirm that the results of nonlinear simulations actually
correspond to the so-called Hall instability, we have per-
formed a linear perturbation analysis of a background toroidal
field of the same form as Eq. (2), in a spherical shell. We
decompose the perturbation �b into its poloidal and toroidal
components �b = �bp + �bt , which in turn can be expressed in
terms of two scalar functions S, T as follows:

�bp = −∇ × (�er × ∇S), �bt = −(�er × ∇T ), (3)

where �er is the unit vector in the radial direction.
Following the standard procedure, but in spherical
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FIG. 2. The radial component of the magnetic field for models
A and B (top and bottom panels) in the middle of the crust (r =
0.95RNS and r = 0.75RNS) at 3 and 9 kyr respectively.

coordinates, we expand the scalar functions in spherical
harmonics:

S = epτ
∑
lm

slm(r)Y m
l (θ, φ), (4)

T = epτ
∑
lm

tlm(r)Y m
l (θ, φ), (5)

where we use τ to denote the time variable to avoid confusion
with the toroidal radial function t (r). This notation allows us
to directly compare with RG02. Here, p is a complex number
to be determined. The eigenvalue p with the largest positive
real part represents the fastest growing mode [with growth
time 1/Re(p)]. With help of an algebraic manipulator, we

obtain the following equations for the perturbations:

r2(pslm − s′′
lm) + l (l + 1)slm

+ im

[
1 − 2

l (l + 1)

]
f tlm + Cm

l±1 = 0,

r2(ptlm − t ′′
lm) + l (l + 1)tlm

+ i m

[
f ′′slm − f s′′

lm + l (l + 1)

r2
f slm

+ 2

l (l + 1)

(
f s′′

lm + s′
lm f ′ − 2

f s′
lm

r

)
− 2

slm f ′

r

]

+Dm
l±1 = 0, (6)

where the primes denote radial derivatives and Cm
l±1 and Dm

l±1
are a shorthand for the coupling terms with the l ± 1 coeffi-
cients (always with the same m index). The Cm

l±1 term only
involves combinations of f s′

l±1,m and f ′sl±1,m, while the Dm
l±1

only involves the product f tl±1,m and its first radial derivative.
For reference, in Cartesian coordinates and planar sym-

metry, RG02 expanded the perturbation in plane waves and
obtained

ps − s′′ + k2 s + i(kx f t − kys f ′) = 0 , (7)

pt − t ′′ + k2 t + ikx( f ′′s − f s′′ + k2 f s) = 0 . (8)

The similitude between equations is clearly visible by iden-
tifying k2 → l (l + 1)/r2, kx f → m f /r2. We note that our
definition of f in the spherical case differs from the planar
case (RG02) in a factor r ( f has units of magnetic field times
length).

In principle, one should solve the fully coupled system of
equations for a large number of l, m’s. However, as a first
approximation, and in part motivated by the similitude of
the equations with the Cartesian case, we neglect coupling
terms. We also note that, in RG02, the fast-growing mode
always has ky = 0. This cancels the term proportional to s f ′,
the counterpart to our coupling Cm

l±1. Our purpose is not to
perform a complete and detailed linear analysis but rather to
assess the interpretation of our 3D nonlinear simulations.

In Fig. 3, we compare the results of this truncated linear
analysis (right) to the nonlinear simulations (left). The right

FIG. 3. Left panel: Spectral power distribution as a function of m (summed over all l), obtained from the 3D simulations. Right panel:
Results from the linear analysis. The color scale shows the inverse growth rates for each mode.
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panels show, in a red color scale, the inverse growth time
of the unstable models for each l and m. Interestingly, the
linear analysis (even neglecting couplings between modes)
agrees very well with the simulations. For each multipole,
the fastest growing modes always correspond to l = m. With
some visual effort translating the two scenarios, one can
compare our results in a spherical shell with Fig. 1 in RG02
in a rectangular slab. Note that the correct analogy should
compare l ≈ |k| = (k2

x + k2
y )1/2 and m ≈ kx. Therefore, the

fastest growing modes with ky = 0 in RG02 should corre-
spond to |k| = kx. This is l = m, as we obtain here. If we
look for example at model A, the analytical estimate of the
growth time is 1/Re(pmax) ≈ 0.6 kyrs, in excellent agreement
with the observed growth in the left panel during the linear
phase, t = 0, 0.5, and 1 kyrs. After a few growth times, the
background has begun to change, the nonlinear evolution sets
in, and the full spectrum is filled by the Hall cascade (see
curves at t = 1.75, 2, and 3 kyr), but we still find a significant
excess power around the m = 20 region. We must note that
the linear analysis is a first-order approximation (because we
omit couplings between neighbor modes), and one should not
expect an exact identification of a single fast growing mode in
the nonlinear results. Moreover, there are a few modes (in the
m = 10–20 range) with very similar growth times.

The linear growth phase in Fig. 3(a) corresponds to the first
three snapshots (t = 0, 0.5, 1 kyrs), and the fact that there is
a range of modes (not exactly peaking at m = 18) is not due
(yet) to a fast evolution of the background but to the fact that
the linear analysis is approximate (we truncate couplings with
neighbor modes to make it simple). So, this number can be
taken as a good indication, but we do not claim that the fast
growing mode is exactly m = 18, with t = 1.75 kyrs. We can
simply conclude that the most unstable modes are in the range
m = 10–25, with typical growth rates of 1–2 kyrs. Similar
considerations apply to model B. We have also obtained a few
eigenfunctions and checked that they are qualitatively similar
to the eigenfunctions of RG02.

Thus, we confirm that the instability observed in the 3D
simulations affects approximately the same wavelength range
and grows on the same timescale of the linear analysis es-
timates. We should stress that the typical wavelength of the
most unstable mode is closely correlated to the thickness of
the shell where the toroidal field is confined. In a realistic
crust, we expect structures with m ≈ 20 and a typical size
of 2πR/20 ≈ 3–4 km (and proportionally smaller for toroidal
rings shifted to higher latitudes). We have considered a purely
toroidal field for simplicity of the analysis, but we have
obtained very similar results in 3D simulations adding an
initial poloidal component and a stratified density [25], con-
cluding that the instability operating here is the Hall instability
(RG02), rather than the ideal one.

A critical ingredient for the instabilities is the choice of
the appropriate boundary conditions. Throughout this work,
we have considered a nonpermeating boundary condition at
the inner crust and a vacuum potential solution in the outer
region. A more realistic approach would consider the role of a
magnetic field threading through the core, as at magnetar field
strengths the assumption of a type-I superconductor may not
hold. In the exterior, a current filled magnetosphere relaxing
to a force-free equilibrium or even dynamically evolving may
be more suitable.

As our main purpose here is to investigate the development
of the instability, we have chosen highly axisymmetric initial
conditions, where the energy in the nonaxisymmetric compo-
nent is six orders of magnitude less than the axisymmetric
part. Because of that, we see the formation of multiple zones.
In a realistic configuration, the initial conditions may not
be that symmetric; therefore, instead of the excitation of
a higher multipolar structure, a less ordered magnetic field
configuration may develop.

The main implication of our result is that a sufficiently
strong toroidal field, as most magnetized NS models assume,
is subject to this nonaxisymmetric instability and will break
into small structures (typically 10–20) in the azimuthal direc-
tion. Such structures can occasionally make the crust yield to
the magnetic stresses [2,28,29], leading to the formation of
magnetic loops similar to the solar coronal loops. This mech-
anism is believed to be at the origin of magnetar outbursts.

We also note that the loops created with this mechanism
have magnetic field strengths typically one order of magnitude
larger than the dipolar large-scale field, in line with the
observations [5]. Besides, our findings also have implications
for the quiescent emission. It is has been proposed [30] that
the high temperatures of magnetars are due to the dissipation
of currents in a shallow layer when magnetospheric currents
return to close the circuit inside the star (see similar arguments
in Refs. [31,32]). The creation of small, force-free magnetic
spots with the right size (a few km2) is consistent with
the typical sizes of the hot emitting spots of magnetars in
quiescence [33,34]. Further works studying the coupled 3D
magnetic and thermal evolution of magnetars are needed to
understand when, and how often, one of this spots results in a
coronal-like flare and locally high temperatures.

This work used the DiRAC@Durham facility managed
by the Institute for Computational Cosmology on behalf
of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The
equipment was funded by BEIS capital funding via STFC
capital Grants No. ST/P002293/1, No. ST/R002371/1 and
No. ST/S002502/1, Durham University and STFC operations
Grant No. ST/R000832/1. DiRAC is part of the National
e-Infrastructure.
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