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Abstract: A significant challenge in neuroscience is understanding how visual information is encoded
in the retina. Such knowledge is extremely important for the purpose of designing bioinspired
sensors and artificial retinal systems that will, in so far as may be possible, be capable of mimicking
vertebrate retinal behaviour. In this study, we report the tuning of a reliable computational bioinspired
retinal model with various algorithms to improve the mimicry of the model. Its main contribution
is two-fold. First, given the multi-objective nature of the problem, an automatic multi-objective
optimisation strategy is proposed through the use of four biological-based metrics, which are
used to adjust the retinal model for accurate prediction of retinal ganglion cell responses. Second,
a subset of population-based search heuristics—genetic algorithms (SPEA2, NSGA-II and NSGA-III),
particle swarm optimisation (PSO) and differential evolution (DE)—are explored to identify the
best algorithm for fine-tuning the retinal model, by comparing performance across a hypervolume
metric. Nonparametric statistical tests are used to perform a rigorous comparison between all the
metaheuristics. The best results were achieved with the PSO algorithm on the basis of the largest
hypervolume that was achieved, well-distributed elements and high numbers on the Pareto front.

Keywords: neural prosthesis; retinal modelling; neural coding; population-based metaheuristic;
evolutionary computation; swarm intelligence; multi-objective optimisation

1. Introduction

In 2010, the World Health Organisation estimated that the number of blind people in the world
amounted to ~40 million [1]. Blindness resulting from retinal infection often leaves the optic nerve
and the inner retina relatively intact. Several promising approaches have emerged to restore the
sight of patients suffering from these conditions, including gene and stem cell therapies. There is,
moreover, one novel technique, the “bionic eye”, which stimulates the visual pathways with an
electronic prosthesis [2].

The development of prosthetic systems to restore sight, such as bioinspired sensors, has included
interfaces with various visual pathways, resulting in different sorts of visual prosthetic interfaces with
the retina, the optic nerve, the lateral geniculate nucleus, the geniculocalcarine tract and the visual
cortex. Neural activity is electronically stimulated at an interface along the visual pathway, from where
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it is relayed to the visual cortex. Leaving the target location aside for one moment, the typical response
to electronic stimulation is the elicitation of light percepts—called phosphenes—which generate
rudimentary greyscale light perception that gives the patient a visual map for the performance of
simple visual tasks and ambulatory movements around fixed objects [3,4]. Unfortunately, visual
prostheses are only able to restore a very limited vision with low spatial resolution [5].

Understanding the visual information systems that encode information in the retina is essential
for the development of cortical neuroprostheses that can mimic those systems for blind people.
The artificially generated signals should be as similar as possible to the signals from the biological retina.
Synthetic signals have to be unequivocal and speedy to reproduce the activity of a restricted number
of retinal ganglion cells (RGCs), which send processed visual information through the optic nerve to
higher visual centres. Considering those points, we have extended a highly parametrised bioinspired
retinal model framework, first presented in [6], to explore new tuning possibilities. This bioinspired
mathematical model describes the different stages that comprise the vertebrate retina, simplifying
its behaviour to generate a low latency model with high throughput in real-time. In the first stage,
the antagonist central–peripherical behaviour of the receptive ganglion cells are modelled and, in the
second stage, the ganglion cell firing behaviour is reproduced. All parts of the mathematical model
have many parametrical candidates to be adjusted, most of which are real numbers with, in reality,
an infinite range of possible values. Therefore, a straightforward understanding of the fine-tuning of
those parameters represents a difficult problem that is addressed through an extension of our previous
work [6,7], in which an automatic population-based multi-objective strategy was proposed to optimise
model performance. We now propose a strategy that consists of applying metaheuristic optimisation
algorithms to fit the model together with analytical tools for evaluating and comparing the results of
each metaheuristic process.

The central contribution of this study is its comparison of different metaheuristic optimisation
algorithms for fine-tuning a bioinspired retinal model of responses to artificial stimuli in mice
retinas. In our study, a retinal model is optimised using four objective functions, which not
only describe relevant features of the response, such as the areas of each receptive field, but also
improve the spike time predictions. In this way, the recurrent problem of oversimplified parametric
model fitting is surmounted, by addressing a multi-objective complex problem. The computational
retina is modelled on the collective responses of a set of retinal ganglion cells, the characteristics
of which mean that the mathematical model is capable of high functional performance—low
latency and high throughput—in real-time. The use of biological extracellular recordings from
mice provided more precise models. As far as is known, this study reports, for the first time,
the evaluation of population-based multi-objective metaheuristics in relation to the fine-tuning
of a retinal model. Our work, therefore, attempts to demonstrate the feasibility of applying
population-based metaheuristics to fine-tune a retinal model in real-time. Research into highly
parametric frameworks is of immense value for the development of prosthetic devices that will
be capable of restoring functional sight to many blind people through direct stimulation of the visual
cortex. This study is therefore important, because it responds to the challenge of designing an
intracortical visual neuroprosthesis that can dialogue with the occipital visual cortex, as a means of
transferring limited, but useful, visual data to patients who would otherwise remain blind [8,9].

Thus, the central objective of this work is to demonstrate that an automatic optimisation strategy,
capable of optimising a bioinspired retinal model that can function in real-time, is feasible by means of
metaheuristic optimisation algorithms. The novelty of this work involves an optimisation strategy that
enables the adjustment of the retinal model, to predict retinal ganglion cell responses. Four biologically
based metrics (peristimulus time histogram, interspike interval histogram, firing rates and neuronal
receptive field size) were selected as objective functions for comparing and evaluating the different
individuals that form the population of candidate solutions to the problem. Unlike traditional retinal
adjustment methods where only the explained variance or correlation coefficient is optimized (a single
objective), our approach optimises the bioinspired retinal model by using those four metrics which
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are obtained from wild type mice retinal ganglion cell recordings. Five different search heuristics
were proposed for fine-tuning the parameters of the retinal model in a scientific analysis that has not
been previously conducted. Finally, nonparametric statistical tests were used to perform a rigorous
comparison between all the metaheuristic models, providing a robust and innovative optimisation
strategy. In summary, a multi-objective retinal model optimisation strategy has, for the first time, been
presented that performs a comparison between different metaheuristic strategies using nonparametric
statistical methods.

In the remainder of this paper, the background to this research will be presented in Section 2.
The materials and the methods used in this study will be described in Section 3. In Section 4,
the experimental results will be reported, and, finally, the concluding comments will be presented in
Section 5.

2. Related Work

Over the last 100 years, vertebrate retinas have been the object of detailed scientific study and
analysis throughout the world [10–17]. Pioneering studies on the basis of neuroanatomy for the
vertebrate nervous system, in general, and anatomic cellular descriptions of the retina, in particular,
were proposed by Ramón y Cajal in 1892 [18]. Vertebrate retinas are mainly composed of three very
thin layers of nerve cell bodies and two layers of synapses. The Outer Nuclear Layer (ONL) consists of
a large number of photoreceptor cells—rod cells and cone cells; the Inner Nuclear Layer (INL) consists
of the horizontal cells, bipolar cells and amacrine cells; and the Ganglion Cell Layer (GCL) consists
of ganglion cells and displaced amacrine cells. Figure 1A shows a simplified schematic diagram of
the connections between the basic cell classes of the retina and the pathways for light to reach the
photoreceptor layer. There are two layers of neuropils between those three layers where synaptic
contacts are regulated. The first neuropil layer is the Outer Plexiform Layer (OPL), consisting of a
dense network of synapses between photoreceptor cells and horizontal cells. The second neuropil
layer is the Inner Plexiform Layer (IPL), consisting of synaptic connections between bipolar cells and
ganglion cells [19]. Figure 1B reveals the complexity of human retina in a vertical section.
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Figure 1. Anatomy of the retina. (A) Schematic diagram of the connections between the basic cell
classes—photoreceptors (P), horizontal cells (H), bipolar cells (B), amacrine cells (A) and ganglion
cells (G). Light rays must reach the sensory cells, the photoreceptors, passing through the entire retina.
(B) Light micrograph of a vertical section of the central human retina (adapted from Webvision [19]).

Several computational models have been proposed to imitate the behaviour of the vertebrate retina
from the single cell to the network level. Simoncelli et al. proposed a method for the characterisation
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of the functional relationship between environmental stimuli and their neural responses, using the
concept of the receptive field. This model combines a linear spatiotemporal filter of single static
nonlinearity [20]. Paninski et al. proposed statistical model-based techniques that provide a unified
solution to the encoding problem (how information is encoded in neural spike trains) and the decoding
problem (how much information is encoded in a spike train) [21]. Pillow et al. analysed the functional
significance of correlated firing in a complete population of macaque parasol retinal ganglion cells
using a multi-neuron spike response model [22]. Nirenberg et al. presented a data-driven model of
retinal input–output relationships that is effective on a broad range of stimuli [23–25]. This prosthetic
system converts visual input into the same patterns of action potentials that the retina normally
produces. It reliably reproduces those patterns for a broad range of stimuli, including faces, landscapes
and animals. Wohrer and Kornprobst proposed a computational simulation software, called Virtual
Retina, which performs large-scale simulations of high biological plausibility [26]. Cessac et al.
extended the range of retina simulation software with a new platform that integrates the retina
simulator and a toolbox for the analysis of spike train population statistics [27]. Huth et al. published
Convis, a Python simulation toolbox for large-scale neural populations, which offers luminance gain
control, contrast gain control and arbitrary receptive fields by 3D convolutions executed on a graphics
card [28]. Martínez-Álvarez et al. proposed a compiler-based framework capable of describing,
simulating and validating customized retina models [29]. Martínez-Cañada et al. proposed a set of
computational retinal microcircuits that can be used as basic building blocks for the modelling of
different retina mechanisms [30]. Recently, deep convolutional neural networks were shown to capture
retinal responses to natural scenes, with results that were close to the variability of the cellular response
range [31,32], as well as multitask recurrent neural networks that provided the necessary flexibility to
model complex neuronal computations [33].

Currently, there are several research groups working towards the development of visual
prostheses, among which may be highlighted the Argus II epiretinal implant from Second Sight
Medical Products Inc. [34,35], the sub-retinal visual implant Alpha IMS/AMS from Retina Implant
AG [36,37], the Boston Retinal Implant [38], the IRIS II and PRIMA devices from Pixium Vision Inc. [39]
and Epi-Ret 3 [40]. In addition to the aforementioned retinal prostheses, other research groups are also
working on the development of cortical visual prostheses [9,41,42].

3. Materials and Methods

3.1. Retinal Model under Study

Most retinal models are normally described using hierarchical processing models, which are
influenced by the biological plausibility of vertebrate retinas. Photoreceptor cells detect visible light
within the retina, where horizontal, amacrine and bipolar cells process the signals, and retinal ganglion
cells that integrate their output in the form of action potentials that are relayed to the higher visual
centres. Retinal neurons, in contrast, form centre-surround receptive fields that react to spatial changes.

Figure 2 shows the basic processing stages of the bioinspired retinal model (BIRM) under
study. In the first stage (Equation (1)), a weighted sum of several spatiotemporal filters over the
captured stimulus is performed; then, in the second stage, the neuromorphic encoding (Equation (2))
is accomplished; finally, the electrode mapping that addresses the output from the second stage to the
corresponding electrodes takes place in the third stage.

The difference-of-Gaussian (DoG) model was used to implement the first stage of the model,
to imitate the spatial centre-surround opposition performed by retinal neurons. The use of image
filtering using the DoG technique, to imitate the centre-surround RGCs, was proposed by Rodieck [43]
and Enroth-Cugell [44]. Furthermore, the Laplacian-of-Gaussian (LoG) model proposed by Marr
and Hildreth [45] was used to capture the “Mexican hat” shape—with large values in the centre and
small opposite polarity values in the surround—of the receptive fields of RGCs. The combination of
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both those models—DoG and LoG—formed the first stage of the model—BIRM, computed with the
following equation,

S1 = W1 · fDoG(σ1, σ2, µ1, µ2, k1, k2, R + B, G)

+W2 · fDoG(σ1, σ2, µ1, µ2, k1, k2, R + G, B)

+W3 · fLoG(σ1, σ2, µ1, µ2, k1, k2, I)

(1)

where DoG is the difference-of-Gaussian filter; LoG is the Laplacian-of-Gaussian filter; σ is the
parameter of the Gaussian filter; µ is the parameter of the Gaussian filter; k is the kernel size of
the Gaussian filter; R is the red channel; G is the green channel; B is the blue channel; I is the intensity
channel; and W1, W2 and W3 are weight variables.
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Figure 2. Flowchart of the bioinspired retinal model (BIRM) under study. Stage 1 is modelled
as a weighted sum of several well-known convolutive spatiotemporal image filters, such as
Difference-of-Gaussian (DoG) and Laplacian-of Gaussian (LoG) filters. Stage 2 is modelled by the noisy
leaky integrate-and-fire model (NLIF). Stage 3, which represents the potential electrode remapping, is
beyond the scope of this paper. This figure is a derivative of “Highland cattle, Skye Island” by Qu1m,
used under CC BY, and Webvision [19].

Neuromorphic encoding is performed in the second stage of the model through the noisy leaky
integrate-and-fire (NLIF) model [46–48]. This model describes neurons as simple electrical circuits
consisting of a capacitor in parallel with a resistor driven by a noisy input. The noise current consists
of Gaussian white noise and represents the net contribution of all noise sources to the membrane
potential. This neuromorphic encoding model is computed by the following equation,

S2 = NLIF(S1, t, l, rp, pt, f m f ) (2)

where S1 is the output of the Equation (1), t is the threshold parameter, l is the leaky parameter, rp is the
refractory period parameter, pt is the persistence time parameter and f m f is the frequency modulation
factor. When the accumulated membrane potential exceeds the threshold value, t, an action potential
is generated, and the accumulated membrane potential is then reset to 0 for a time, rp. The parameter l
modulates the diffusion of ions through the cell membrane, the parameter pt modulates the number of
times the image is processed—to move ever closer to the continuous processing of the retina—and the
parameter f m f modulates the shape of the transient response of the RGC.

Every retinal model (BIRM) is encoded by a set of mixed integer and floating-point values
(x ∈ R). Given that there are a series of restrictions associated with each parameter, each solution to
the optimisation problem must satisfy each of those restrictions, to represent a valid strategy. As a
consequence, whenever a new instance of the BIRM is generated, each module in charge of generating
each parameter must comply with all the restrictions.

3.2. Human Visual System Modelling

Benoit et al. proposed an image processing approach to copy the Human Visual System (HVS) by
modelling some of its parts, to develop low-level image processing modules [49]. The study showed
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the advantages of using such modelling, to develop efficient and rapid human vision inspired modules
for low-level image processing.

This image processing approach was used to model the input–output relationships of the retina,
to provide a baseline for comparison. The model consisted of a cascade of a first stage with the
spatiotemporal filtering of the HVS model, followed by a Poisson spike generator (HVSP) (see
Figure 3). Poisson processes cannot mimic certain retina properties [22], i.e., bursting or refractoriness,
though they can be used as a baseline for comparison, due to their computational simplicity.

HVS

(OPL)

Spatio-temporal
filtering and contour

enhancement

Poisson Spiking

Neuromorphic
encoding

Visual cortex

Electrode mapping

Stage 2 Stage 3Stage 1

Visual stimulus Output
HVS

(IPL)

Contour
enhancement and

motion filtering

Figure 3. Functional processing blocks of the Human Visual System Poisson (HVSP) model. This figure
is a derivative of “Highland cattle, Skye Island” by Qu1m, used under CC BY, and Webvision [19].

3.3. Metaheuristic Optimisation Algorithms

Multi-objective optimisation is simultaneously intended to optimise mathematical optimisation
problems with more than one objective for which no single solution exists. Those optimisation
problems are called multi-objective optimisation problems (MOPs). Metaheuristics belong to the family
of stochastic optimisation methods where nature-inspired mechanisms (based on some principles from
ethology or biology) are imitated for solving optimisation problems [50]. Traditionally, metaheuristics
have been classified as single-solution based metaheuristics and population-based metaheuristics in the
literature. Single-solution metaheuristics deal with a single initial solution, whereas population-based
metaheuristics deal with a population of candidate solutions. The most widely used population-based
methods are Evolutionary Computation (EC) and Swarm Intelligence (SI). Inspired by Darwin’s Theory
of Evolution [51], EC algorithms are based on the principles of natural selection, where inherited
genetic variations help organisms survive, reproduce and compete. Among the most prominent
algorithms are genetic algorithms [52,53], genetic programming [54], evolution strategies [55] and
cultural algorithms [56]. On the other hand, SI algorithms are inspired from the collective behaviour
of animal and insect societies, where a population of individuals/agents interact in a very limited
way with their environment, performing complex tasks, so as to ensure their survival. The main
metaheuristics belonging to this field are particle swarm optimisation [57], bee colony optimisation [58],
ant colony optimisation [59] and bacterial foraging optimisation [60]. Figure 4 shows the basic flow
diagram of population-based optimisation metaheuristics.

In addition, metaheuristic optimisation algorithms have been validated in other areas of knowledge,
such as industrial soft sensor modelling [61], wireless sensor networks [62–66], privacy-preserving
data mining [67] and RFID network planning [68,69]. A brief description of main population-based
optimisation metaheuristics is summarised below.

3.3.1. Genetic Algorithms

Genetic Algorithms (GA) are a set of population-based search heuristics inspired by the natural
selection process by means of three genetic operators, i.e., mutation, crossover and selection [52,53].
The population of candidate solutions is formed by chromosomes and the best are carefully chosen
as ascendants that will create new descendants. Individuals are selected by means of a fitness-based
process, where fitter solutions are selected with higher probabilities. Finally, the mutation operator is
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used, to maintain population diversity and to prevent premature convergence. A description of the
adaptation of the GA algorithm is shown in Algorithm 1.

GENERATE INITIAL
POPULATION

START

EVALUATION

STOP
CONDITION

TERMINATION

END

SELECTION
/

GUIDED SEARCH

VARIATION

YES

NO

Figure 4. Basic flow chart of a general population-based metaheuristics.

Deb et al. [70] presented the nondominated sorting genetic algorithm II (NSGA-II) as a
Pareto-based ranking scheme. The algorithm searches for nondominated solutions by classifying,
in terms of Pareto dominance, the population of individuals at different levels. Furthermore,
the crowding distance metric is used to generate an estimation of the density of the solutions
surrounding any particular one in the population. Solutions with smaller values are more crowded,
so higher crowding distance values are preferred. After the mating selection process, parent and
offspring populations are combined and the resulting population is truncated deleting the worst 50%.

The Strength Pareto Evolutionary Algorithm (SPEA) proposed by Zitzler and Thiele [71] is a
genetic algorithm for finding Pareto-optimal solutions of MOPs. The SPEA algorithm uses an external
archive of a predefined size to preserve all the nondominated solutions. Briefly, the individuals
are selected from the union of the population and the external archive, and the mating process is
performed through binary tournaments, followed by the mutation and recombination stages. Finally,
the entire population is replaced by the new descendants. Even though SPEA has a good performance,
several studies have identified potential weaknesses, such as fitness assignment, density estimation
and archive truncation. SPEA2 was designed to surmount the aforementioned issues [72]. The new
features of SPEA2 are the use of a new fitness assignment that incorporates density information,
the external archive size is fixed over the time, only the archive members participate in the mating
selection process and the new clustering technique retains the boundary points. These characteristics
mean that SPEA2 can perform better than its predecessor for all problems. Finally, SPEA2 appears to
perform better in higher-dimensional objective spaces than PESA [73] and NSGA-II [70].

Recently, a new procedure for solving multiple-objective optimisation problems—NSGA-III—was
proposed by Deb and Jain [74]. Many-objective optimisation problems refer to a group of problems
with four or more objectives. This population-based heuristic maintains the population diversity by
using a number of well-spread reference points, finding a well-converged and well-diversified set of
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solutions in all test problems. Whereas mainstream multi-objective evolutionary algorithms may have
trouble solving optimisation problems with more than four objectives, the NSGA-III algorithm can
produce satisfactory results for problems with up to 15 objectives.

Algorithm 1: Multi-Objective Genetic Algorithm.

begin
Initialise population
Evaluate individuals
gen⇐ 0
while gen < MAX do

Select parents
Recombine pairs of parents (mating)
Mutate offspring
Evaluate individuals
Select individuals (next generation)
Update nondominated solutions
Compute hypervolume
gen ++

end
Save results

end

3.3.2. Particle Swarm Optimisation

Based on simplified animal social behaviours and the movement of organisms such as bird
flocking or fish schooling, Kennedy [57] proposed a population-based search heuristic and optimisation
technique with nonlinear functions called Particle Swarm Optimisation (PSO). PSO is included in
the field of optimisation metaheuristics and has been found to be successful in a wide variety of
optimisation problems such as image and video analysis applications [75], electromagnetics [76]
and scheduling [77].

After a random initialisation of a swarm of candidate solutions, referred herein as particles,
the algorithm finds the best global solution by moving the particles in the search space towards its own
best position and towards the best particle of the entire swarm on the basis of its position and velocity.
Numerous improvements of the initial metaheuristic model were subsequently presented [78–80].

For the purpose of solving multi-objective optimisation problems, the original structure of the PSO
algorithm needs to be modified. An external archive was used in this study to keep the Pareto-optimal
individuals, working as leaders in the swarm particle updating process. The reader interested in
alternative approaches can consult the state-of-the-art published by Reyes-Sierra and Coello [81].
A description of the adaptation of the PSO algorithm is shown in Algorithm 2.
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Algorithm 2: Multi-Objective PSO Algorithm.

begin
Initialise swarm
Evaluate particles
Initialise default personal bests
Initialise leaders in an external archive
gen⇐ 0
while gen < MAX do

for each particle in swarm do
Select leader
Update position
Evaluate
Update personal best

end
Update leaders
Compute hypervolume
gen ++

end
Save results

end

3.3.3. Differential Evolution

Differential Evolution (DE), proposed by Storn and Price [82], is a population-based algorithm
that is used to solve optimisation problems. This method optimises a problem by iteratively generating
new solutions through recombination and mutation operators. The mutation process is the basic
operation, in which a new descendant is produced, based on the combination of the candidate solution
with differences between both individuals. The population size is maintained through a replacement
procedure where the newly generated individual competes against its corresponding predecessor and
replaces it only if it has a better fitness value.

As in the PSO algorithm, the original structure of the DE algorithm needs to be modified for
the purpose of solving multi-objective optimisation problems. Robič and Filipič [83] suggested an
approach to multi-objective problems named Differential Evolution for Multi-Objective Optimisation.
The “DE/rand/1/bin” variant was used in this study, where “DE” refers to the name of the algorithm and
the rest of the parameters indicate that a pair of solutions are randomly selected. Finally, a binomial
recombination is used to build the descendant solution candidate. The methodology to maintain the
population size is as follows; if a descendant dominates its predecessor, that individual is replaced; if a
descendant is dominated by its predecessor, it is discarded; otherwise, the new descendant is added
to the population. After the creation process of the offspring, this algorithm applies a nondominated
sorting mechanism combined with the use of the crowding distance measure (derived from the
original NSGA-II algorithm), to maintain the population size. A description of the adaptation of the
DE algorithm is shown in Algorithm 3.
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Algorithm 3: Multi-Objective DE Algorithm.

begin
Initialise population
Evaluate individuals
gen⇐ 0
while gen < MAX do

for each individual in population do
Select randomly r1 6= r2 6= r3
Create candidate (F)
Evaluate candidate
if candidate dominates individual then

Replace individual with candidate
else if individual does not dominate candidate then

Insert candidate in the population
else

Discard candidate
end

end
Truncate population
Update nondominated solutions
Compute hypervolume
gen ++

end
Save results

end

3.4. Retina Preparation, Multi-Electrode Recordings and Spike Sorting

Biological records were used to perform acceptable evaluations for the purpose of obtaining
fine-tuned models. Extracellular recordings from populations of retinal ganglion cells were obtained
from wild type (C57BL/6J strain) mice. Both eyes were removed following anaesthesia with 4%
isoflurane inhalational and cervical dislocation. Both the cornea and lens were removed from the
eyeball. The retinas were removed from the remaining eyecup with the pigment epithelium and
mounted on an agar plate with the ganglion cell side facing up. A piece of nitrocellulose paper covered
the tissue for the purpose of maintaining the correct wetness. All experimental procedures were
performed in accordance with the ARVO and European Communities Council Directives (86/609/ECC)
for the use of laboratory animals. The entire procedure was performed under dim red illumination.

Extracellular recordings were obtained from the ganglion cell layer, by means of an array of
100 electrodes [84]. Electrical signals captured by the array electrodes were digitalized and stored
using a data acquisition and signal processor system. Spike sorting was accomplished by well-known
clustering algorithms and Principal Component Analysis (PCA).

The visual stimuli covered an area of 120× 154 pixels at 60 Hz refresh rate. Stimuli was resized to
a 4 mm ×4 mm area by means of optical lenses and projected through a beam splitter focusing the
stimulus onto the photoreceptor layer. Several repetitions of a 700 ms flash were displayed followed
by darkness for 2300 ms to classify the ganglion cells in ON, OFF and ON/OFF. The biological retinas
were then stimulated with 250 µm wide white bars passing across a black screen at 1 Hz in eight
orthogonal directions.

Figure 5 summarises the above procedure for the acquisition of electrophysiological recordings.
Readers with an interest in the procedure for obtaining extracellular recordings may consult a detailed
description in [6,85].
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Figure 5. Data acquisition procedure of multi-electrode recordings and spike sorting.

3.5. Objective Functions

Four objective functions were selected for the purpose of comparing biological and synthetic
electrophysiological recordings and to check whether a given design solution was close to achieving
the set aims. The electrophysiological recordings obtained from the ganglion cells of mice consist
of spike train data. Data generated by the retinal framework are likewise comprised of spike train
data for all simulated ganglion cells. Kullback–Leibler Divergence (KLD) [86] (also known as relative
entropy) was employed to assess the similarity of the PSTH response (PSTH-KLD), so as compare to
and contrast with the peristimulus time histograms (PSTH). The interspike interval histogram (ISIH)
data of each ganglion cell was also measured with the same technique (ISIH-KLD). For the purpose
of measuring the spike count rate, the absolute difference of the firing rate (FRAD) was selected as
one of the objective functions. Last, RGCs are known to integrate the signals from a group of afferent
neurons, forming the neuron’s receptive field (RF), which comprises a two-dimensional region in a
visual space of varying size. The method proposed by Díaz-Tahoces et al. was used for the purpose of
estimating the neuron’s receptive field [6,85]; therefore, the last metric selected as one of the objective
functions was the absolute difference of the neuron’s receptive field size (RFAD). Those four objective
functions—PSTH-KLD, ISIH-KLD, FRAD and RFAD—were selected as objective functions of the
proposed framework to guide simulations towards optimal design solutions.

As detailed above, this study addresses a multi-objective optimisation problem in which all objectives
should be minimised. Two of the metrics—PSTH-KLD and ISIH-KLD—represent the relative entropy,
and are responsible for measuring the similarity between two distributions. Therefore, they should
be minimised. Likewise, the FRAD should be minimised, as the firing rate should be as similar as
possible. Lastly, models of greater reliability were obtained, by ensuring that the area of the receptive
field of the RGCs was of an appropriate and similar size.

3.6. Evaluation of Multi-Objective Optimisation Metaheuristics

The goal of multi-objective optimisation is to solve nontrivial multi-objective optimisation
problems where no single solution exists. All objective functions are said to be conflicting and
have to be optimised simultaneously. Therefore, only a good approximation of the Pareto frontier can
be obtained. Furthermore, the results produced by multi-objective optimisation metaheuristics are
difficult to compare between each other. The resulting sets of best solutions of distinct population-based
search heuristics must be compared to evaluate and compare their performance. All metaheuristics
optimise the same model parameters, as the aim is to study the best performing algorithm. One of the
most commonly used performance metrics is the hypervolume (HV) indicator [87,88], which is capable
of mapping complex solutions with more than two objectives to a single value that can be easily
used to compare the solution sets. The hypervolume indicator is also known as the S metric or the
Lebesgue measure. Briefly, the HV metric represents a calculation of the volume of the dominated area
of the objective space. The HV metric may be simply described as the volume of the objective space
contained between a previously defined reference point and the Pareto-optimal solutions. Evaluation
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of multi-objective optimisation metaheuristics is of great interest because they possess the highly
beneficial characteristic of strict Pareto compliance [89,90].

Other performance metrics, such as Inverted Generational Distance [91], were rejected, due to the
fact that the exact Pareto-optimal sets are unknown. Moreover, the HV metric has the characteristic that
the HV value is higher for solution sets that dominate all other sets in relation to Pareto dominance.

3.7. Statistical Interpretation

Due to the stochastic nature of the population-based metaheuristics, statistical tools should be
used to compare the results of the experiments. The most straightforward strategy for the experimental
design is to run each algorithm for a specified number of independent executions and then obtain
some descriptive statistics of the results, such as the means and standard deviations. The use of graphs
and charts for this task can be useful. Box plots [92,93] are one of such representations, because they
allow a visual comparison of the results, from which some conclusions can be drawn.

Given the nature of the problem, as each individual must process a stimulus of considerable
duration, running each experiment is computationally expensive. Having analysed the variability of
the hypervolume, it was, therefore, decided that each of the experiments (metaheuristics) would be
performed 10 times.

Nevertheless, it was also necessary to conduct a set of statistical inferences that would support
the conclusions drawn from the data. The use of parametric methods is not advisable, in order to
assess and to compare multi-objective optimisation metaheuristics, because the data distributions are
unknown. Conversely, nonparametric methods can be used to decide when a stochastic metaheuristic
is considered better than any other. Nonparametric methods were therefore selected to analyse
the data, in order to follow a methodology for comparing metaheuristic optimisation algorithms.
Specifically, the Kruskal–Wallis test [94], the Friedman test [95,96] and the Mann–Whitney–Wilcoxon
U test [97,98] were applied in this study. The results must furthermore be adjusted due to multiple
comparisons, for which purpose the Bonferroni–Dunn procedure [99], the Hochberg procedure [100]
and the Hommel procedure [101] were applied.

4. Experimental Evaluation and Results

Biological extracellular recordings were utilised as reference standards for fine-tuning the model
under study, BIRM, through five different multi-objective optimisation metaheuristics—SPEA2,
NSGA-II, NSGA-III, PSO and DE. Then, a preliminary analysis of all the models was performed.
As shown in Section 3.4, mice retinas were stimulated with 250 µm wide white bars set at different
angles—0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦—passing across a black screen.

All multi-objective optimisation metaheuristics were developed, as stated in the original
publications, and all hyperparameters were set as suggested in their original studies. The probabilities
of crossover and mutation operators were fixed to 0.40 and 0.05, respectively. All the experiments
were initialised with a population of 40 individuals and were simulated over 100 generations.
Those parameters were selected following the results of preliminary experiments, to determine the
balance between performance and execution time. The parameters of the PSO search heuristics—φ1

and φ2—were both set at 2.05, as stated in the original study. For the DE search heuristic, the parameter
F was fixed to 1 as stated in the original study. For all multi-objective optimisation metaheuristics,
identical population and archive sizes were used. Table 1 summarises the parameters of the retinal
model BIRM, which were selected to be automatically changed, together with their range of variations.
The kernel sizes of the first stage of the model (see Figure 2) were restricted between 3 and 13, based on
a previous manual analysis of the neuron’s receptive fields. In contrast, the parameters of the second
stage, NLIF, were identified, as the most important parameters of the retinal model when stimulated
with an artificial stimulus (white bars passing across a black screen) and the ranges were determined
based on manual tests. Regarding the type of data, two chromosome parameters—PersistenceTime
and K—were set as integers, and the rest were set as floating-point numbers. All the parameters
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were selected on the basis of their relevance in relation to the selected stimulus, following a thorough
analysis of the constraints and the boundaries. All other parameters of the retinal model were fixed
and remained unchanged during the training process (see Equation (1)). Last, as stated in Section 3.5,
four objective functions were selected to indicate how close each design solution was to the expected
biological extracellular data.

Table 1. Chromosome parameters with their variation range.

Parameter Range Data Type

K 3–13 int
Leakage 10.0–15.0 float

Threshold 225.0–275.0 float
Persistence Time 3–7 int
Refractory Period 1.0–10.0 float

Frequency Modulator Factor 0.25–0.40 float

The visualisation of the results and their interpretation was expected to be extremely difficult in
all MOPs with more than three objectives: the greater the number of objectives, the more complex
the problem and the greater the difficulty for a decision-maker wishing to select a preferred solution.
First, as part of the preliminary assessment procedure, Figure 6 shows a set of charts with the
results and the Pareto fronts with the objective functions simultaneously minimised for a single
experiment. All data were represented by drawing a comparison in pairs for each of the metrics.
As can be observed, all the Pareto individuals were nearly identical. However, it cannot be argued
from a pairwise comparison of the metrics that one of the metaheuristics is better or worse than all
the others. In contrast, the Pareto fronts for the experiments with NSGA-III and PSO have more
individuals, which is desirable. For example, in Figure 6a, the Pareto fronts of the SPEA2 algorithm
and the NSGA-III algorithm are shown to contain 34 and 46 individuals, respectively, and the PSO
algorithm contains 52 individuals. In Figure 6f, the NSGA-III algorithm evidently outperforms the
other metaheuristics with 21 individuals. In Figure 6d, the PSO experiment obtained better results
than the other metaheuristics, because of its well-spread Pareto front that dominates the rest of Pareto
sets. In summary, after a preliminary analysis, the data to determine which of the multi-objective
optimisation metaheuristics generated better results were not conclusive, but the PSO and NSGA-III
algorithms generated larger-sized Pareto sets.
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Figure 6. Multi-objective graphs and Pareto-optimal sets of all multi-objective optimisation
metaheuristics facing each pair of criteria. (a) The PSTH-KLD metric against the Firing Rate Absolute
Difference (FRAD) metric with their Pareto fronts; (b) The PSTH-KLD metric against the ISIH-KLD
metric with their Pareto fronts; (c) The PSTH-KLD metric against the RFAD metric with their Pareto
fronts; (d) The FRAD metric against the ISIH-KLD metric with their Pareto fronts; (e) The FRAD metric
against the RFAD metric with their Pareto fronts; (f) The ISIH-KLD metric against the RFAD metric
with their Pareto fronts.

For the purpose of avoiding the stochastic consequences of all multi-objective optimisation
metaheuristics, 10 independent executions were performed per metaheuristic. As indicated in
Section 3.7, the experiments are computationally expensive (the computation time for each iteration
required was ~20 min), so it was estimated that running each experiment 10 times would avoid
stochastic effects. As described in Section 3.6, a metric that can be used to evaluate the results was
necessary, due to the multi-objective nature of the problem. Figure 7 shows the average values of the
four objective functions for all the executions, from which no clear conclusions can be drawn. As for
the hypervolume, Figure 8a shows the distribution of the maximum HV metric of the 10 experimental
executions, and Figure 8b shows the distribution of their last generation. The data distribution of the
HV metrics is represented below in two box plots, enhancing our understanding of the sample data,
which will help us draw comparisons between samples. Whenever one approximation dominates
another approximation, the HV of the former will be greater than the HV of the latter. It appears that a
variant of the NSGA-II algorithm, as the selection algorithm for the maintenance of the population size
in the DE experiments, produced very similar results. In contrast, SPEA2 results were very similar
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to those for DE and NSGA-II HV, although their distributions were wider. The worst results were
obtained with the NSGA-III algorithm and the best results, with the PSO algorithm.
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Figure 7. Average value of the objective functions over 100 generations: Particle Swarm Optimisation
(PSO) (blue), DE (orange), SPEA2 (green), NSGA-II (red) and NSGA-III (purple).
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Figure 8. Distribution of the hypervolume metric for 10 independent runs of all multi-objective
optimisation metaheuristics.
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Figure 9 shows the average value of the HV performance metric for all algorithms over 100
generations. Note that the HV metric can be reduced during the experiment (NSGA-III algorithm).
This is because neither multi-objective optimisation metaheuristic optimises the HV metric directly,
unlike other search heuristics such as Hype [102]. As stated in Section 3.6, the best results were achieved
by the PSO algorithm after the tenth generation, because, in all likelihood, it maximises the number
of elements of the Pareto optimal set and the spread of solutions found through the leader selection
mechanism. In contrast, note that the worst results were obtained with the NSGA-III algorithm.
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Figure 9. Averaged hypervolume metric over 100 generations for all multi-objective optimisation
metaheuristics.

Statistical hypothesis tests are needed to validate the HV values of independent experiments.
The Kruskal–Wallis test and the Friedman test were used to determine whether the results were
produced with the same probability distribution, i.e., if the search heuristics produced statistically
significant different results. As a reminder, a p-value provides information on the significance or
otherwise of a statistical hypothesis test. A p-value less than 0.05 was considered statistically significant.
The Kruskal–Wallis test and the Friedman test results were equal to 1.21× 10−7 and 2.14× 10−6,
respectively. Significant differences therefore existed between the results of all the algorithms.

Although the results were not the same, it cannot be established which were different or similar
to the others. The Mann–Whitney–Wilcoxon U test was, therefore, applied in a pairwise manner,
to determine whether the results of any one algorithm were significantly better than those of the other.
Table 2 shows the pairwise results. As can be observed, there are significant differences between
all the algorithms, except between NSGA-II and SPEA2 (p = 0.0963) and between NSGA-II and DE
(p = 0.4497), which was probably due to the use of the NSGA-II algorithm as the selection algorithm
on the truncation process of DE. However, these p-values are not appropriate for multiple pairwise
comparisons, because they do not consider the other comparisons. Adjusted p-values (APVs) were
therefore applied to solve that problem, which can be used to consider the results of multiple tests.
In this study, the Bonferroni–Dunn procedure, the Hochberg procedure and the Hommel procedure
were applied to adjust the p-values. Table 3 shows the adjusted p-values for multiple comparisons
between all the metaheuristics. The adjusted p-values demonstrated that there were significant
differences between the different groups, except in the comparisons between certain metaheuristics:
SPEA2 vs NSGA-II and NSGA-II vs. DE.
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Table 2. Pairwise Mann–Whitney–Wilcoxon U test. Significant values are those p-values (<0.05) shown
in bold.

SPEA2 NSGA-II NSGA-III PSO DE

SPEA2 - 0.0963 0.0015 0.0002 0.0233
NSGA-II - - 0.0003 0.0002 0.4497
NSGA-III - - - 0.0002 0.0002

PSO - - - - 0.0002
DE - - - - -

Table 3. Adjusted p-values for multiple comparisons between all metaheuristics. Significant values are
those p-values shown in bold.

Comparison Unadjusted Bonferroni Hochberg Hommel

SPEA2 versus NSGA-II 0.0963 1.0000 0.1070 0.1070
SPEA2 versus NSGA-III 0.0015 0.0300 0.0021 0.0021
SPEA2 versus PSO 0.0002 0.0042 0.0004 0.0004
SPEA2 versus DE 0.0233 0.4668 0.0292 0.0292
NSGA-II versus NSGA-III 0.0003 0.0057 0.0005 0.0005
NSGA-II versus PSO 0.0002 0.0031 0.0004 0.0004
NSGA-II versus DE 0.4497 1.0000 0.4497 0.4497
NSGA-III versus PSO 0.0002 0.0031 0.0004 0.0004
NSGA-III versus DE 0.0002 0.0042 0.0004 0.0004
PSO versus DE 0.0002 0.0031 0.0004 0.0004

Last, Figure 10 shows the spike rasters of one retinal ganglion cell responding to four repeated
trials of the same stimulus (top black row) compared to the predictions of the tuned retinal model
under study—BIRM (middle grey row)—and the HVSP model (bottom red row), to show how the
models predict retinal responses. A variety of parameters for the HVSP model were explored, based on
the recommendations of the original study [49]. In the same graph, the peristimulus time histograms
of the spike rasters are shown, which makes it possible to summarise the time-varying firing rate
exhibited by the biological data and both models. PSTHs were computed by binning each response,
then summing and filtering with a Gaussian function. Each set of raster data is represented together
with the accumulated raster which gathers all repetitions for biological (black) and predicted cases
(grey for the tuned BIRM and red for the HVSP model). In the case of the data predicted with the
tuned model, the four rasters were generated by one of the individuals from the PSO Pareto front after
performing an analysis and selection of the elements of the Pareto front. Rasters of RGC responses
and the corresponding simulated responses from both models illustrate that the tuned model captures
the structure of the RGC spike trains in a similar way to the HVSP model. The average firing rates
of biological data, HVSP model output and tuned BIRM output were compared for calculation of
the Pearson correlation coefficient (PCC) as a performance measure, with the purpose of quantifying
the similarity between predicted and recorded firing rate traces. Both models can predicate the RGC
response with PCC up to 0.45, consistent with previous results [103]. In addition, as can be seen in the
figure, the adjusted BIRM is able to capture the regions with low firing rates with greater precision
than the HVSP model (flat regions).
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Figure 10. Spike rasters and normalised PSTHs of one retinal ganglion cell responding to 4 repeated
trials of the same selected stimulus: biological data (black), tuned bioinspired retinal model (BIRM)
(grey) and the Poisson spike generator (HVSP) model (red).

5. Conclusions

The tuning of a highly parameterisable retinal model has been presented in a novel contribution
for the prediction of retinal ganglion cell responses by means of a multi-objective optimisation strategy.
The contributions of this work are as follows. First, a generic automatic optimisation framework has
been developed for accurate prediction of retinal responses produced by a real-time mathematical
model of the retina that mimics vertebrate retinal behaviour. The design follows the principles of
clean architecture, so this framework can easily be extended to the automatic adjustment of other
retinal models, as well as adjusted to incorporate new metaheuristics. Second, the accuracy of the
retinal model under evaluation has been compared by means of biological recordings from mice
through four metrics, thereby achieving models of greater accuracy. Having conducted the initial
experiments, we found that better results were obtained using all the metrics, instead of reducing the
problem to a single objective. Last, five different search heuristics have been proposed to conduct the
fine-tuning of the parameters of a bioinspired retinal model, with the hypervolume selected as the best
comparative metric. For this particular multi-objective optimisation problem, the best results were
achieved with the PSO algorithm, in so far as it produced the largest hypervolume, a large number
of elements on the Pareto front and a good spread of solutions (with uniform and smooth vector
distributions). Furthermore, a rigorous comparison between all the algorithms has been conducted
by means of nonparametric statistical tests providing an accurate optimisation strategy. Adjusted
models with the PSO algorithm predicted RGC responses with a good correlation, capturing the
regions with low firing rates better than the HVSP model. Moreover, the adjusted BIRM can work in
real-time, which the HVSP model cannot perform, which is desirable for the development of visual
neuroprostheses. In conclusion, despite the obvious limitations of using an animal model that cannot
be easily transposed to restore functional human vision, this work may serve as the basis for future
experiments, to demonstrate the feasibility of bioinspired sensors and neuroprosthetic interfaces with
the occipital cortex.
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